| 1 | library(shiny)
 | 
| 2 | library(tidyverse)
 | 
| 3 | library(shinythemes)
 | 
| 4 | library(data.table)
 | 
| 5 | library(RCurl)
 | 
| 6 | library(randomForest)
 | 
| 7 | library(mlbench)
 | 
| 8 | library(janitor)
 | 
| 9 | 
 | 
| 10 | 
 | 
| 11 | # Read data
 | 
| 12 | DATA <- BostonHousing
 | 
| 13 | 
 | 
| 14 | # Rearrange data so the response variable is located in column 1
 | 
| 15 | DATA <- DATA[,c(names(BostonHousing)[14],names(BostonHousing)[-14])]
 | 
| 16 | 
 | 
| 17 | # Creating a simple RF model
 | 
| 18 | model <- randomForest(medv ~ ., data = DATA, ntree = 500, mtry = 4, importance = TRUE)
 | 
| 19 | 
 | 
| 20 | 
 | 
| 21 | # UI -------------------------------------------------------------------------
 | 
| 22 | ui <- fluidPage(
 | 
| 23 |   
 | 
| 24 |   sidebarPanel(
 | 
| 25 |     
 | 
| 26 |     h3("Parameters Selected"),
 | 
| 27 |     br(),
 | 
| 28 |     tableOutput('show_inputs'),
 | 
| 29 |     hr(),
 | 
| 30 |     actionButton("submitbutton", label = "calculate", class = "btn btn-primary", icon("calculator")),
 | 
| 31 |     hr(),
 | 
| 32 |     tableOutput("tabledata")
 | 
| 33 | 
 | 
| 34 |     
 | 
| 35 |   ), # End sidebarPanel
 | 
| 36 |   
 | 
| 37 |   mainPanel(
 | 
| 38 |     
 | 
| 39 |     h3("Input widgets"),
 | 
| 40 |     uiOutput("select")
 | 
| 41 |     
 | 
| 42 |   ) # End mainPanel
 | 
| 43 |   
 | 
| 44 | ) # End UI bracket
 | 
| 45 | 
 | 
| 46 | 
 | 
| 47 | 
 | 
| 48 | # Server -------------------------------------------------------------------------
 | 
| 49 | server <- function(input, output, session) {
 | 
| 50 |   
 | 
| 51 | # Create input widgets from dataset  
 | 
| 52 |   output$select <- renderUI({
 | 
| 53 |     df <- req(DATA)
 | 
| 54 |     tagList(map(
 | 
| 55 |       names(df[-1]),
 | 
| 56 |       ~ ifelse(is.numeric(df[[.]]),
 | 
| 57 |                yes = tagList(sliderInput(
 | 
| 58 |                  inputId = paste0(.),
 | 
| 59 |                  label = .,
 | 
| 60 |                  value = mean(df[[.]], na.rm = TRUE),
 | 
| 61 |                  min = round(min(df[[.]], na.rm = TRUE),2),
 | 
| 62 |                  max = round(max(df[[.]], na.rm = TRUE),2)
 | 
| 63 |                )),
 | 
| 64 |                no = tagList(selectInput(
 | 
| 65 |                  inputId = paste0(.),
 | 
| 66 |                  label = .,
 | 
| 67 |                  choices = sort(unique(df[[.]])),
 | 
| 68 |                  selected = sort(unique(df[[.]]))[1],
 | 
| 69 |                ))
 | 
| 70 |       )
 | 
| 71 |     ))
 | 
| 72 |   })
 | 
| 73 |   
 | 
| 74 | 
 | 
| 75 | # creating dataframe of selected values to be displayed
 | 
| 76 |   AllInputs <- reactive({
 | 
| 77 |     id_exclude <- c("savebutton","submitbutton")
 | 
| 78 |     id_include <- setdiff(names(input), id_exclude)
 | 
| 79 |     
 | 
| 80 |     if (length(id_include) > 0) {
 | 
| 81 |       myvalues <- NULL
 | 
| 82 |       for(i in id_include) {
 | 
| 83 |         myvalues <- as.data.frame(rbind(myvalues, cbind(i, input[[i]])))
 | 
| 84 |         
 | 
| 85 |       }
 | 
| 86 |       names(myvalues) <- c("Variable", "Selected Value")
 | 
| 87 |       myvalues %>% 
 | 
| 88 |         slice(match(names(DATA[,-1]), Variable))
 | 
| 89 |     }
 | 
| 90 |   })
 | 
| 91 | 
 | 
| 92 |   
 | 
| 93 | # render table of selected values to be displayed
 | 
| 94 |   output$show_inputs <- renderTable({
 | 
| 95 |     AllInputs()
 | 
| 96 |   })
 | 
| 97 |   
 | 
| 98 |  
 | 
| 99 | # Creating a dataframe for calculating a prediction
 | 
| 100 |   datasetInput <- reactive({  
 | 
| 101 |     
 | 
| 102 |     df1 <- data.frame(AllInputs(), stringsAsFactors = FALSE)
 | 
| 103 |     input <- transpose(rbind(df1, names(DATA[1])))
 | 
| 104 | 
 | 
| 105 |     write.table(input,"input.csv", sep=",", quote = FALSE, row.names = FALSE, col.names = FALSE)
 | 
| 106 |     test <- read.csv(paste("input.csv", sep=""), header = TRUE)
 | 
| 107 |     
 | 
| 108 |     
 | 
| 109 | # defining factor levels for factor variables
 | 
| 110 |     test[4] <- factor(test[4], levels = unique(DATA[,5])) # <- This line will cause problems if multiple factors in dataset or if different column location
 | 
| 111 |    
 | 
| 112 | 
 | 
| 113 | # Making the actual prediction and store it in a data.frame     
 | 
| 114 |     Prediction <- predict(model,test)
 | 
| 115 |     Output <- data.frame("Prediction"=Prediction)
 | 
| 116 |     print(format(Output, nsmall=2, big.mark=","))
 | 
| 117 |   })
 | 
| 118 |   
 | 
| 119 | 
 | 
| 120 | # display the prediction when the submit button is pressed
 | 
| 121 |   output$tabledata <- renderTable({
 | 
| 122 |     if (input$submitbutton>0) { 
 | 
| 123 |       isolate(datasetInput()) 
 | 
| 124 |     } 
 | 
| 125 |   })
 | 
| 126 |   
 | 
| 127 |   
 | 
| 128 | } # End server bracket
 | 
| 129 | 
 | 
| 130 | 
 | 
| 131 | 
 | 
| 132 | # ShinyApp -------------------------------------------------------------------------
 | 
| 133 | shinyApp(ui, server)
 |