
1/18

Benne de Bakker October 4, 2019

TB6600 Stepper Motor Driver with Arduino Tutorial
makerguides.com/tb6600-stepper-motor-driver-arduino-tutorial

In this tutorial, you will learn how to control a stepper motor with the TB6600

microstepping driver and Arduino. This driver is easy to use and can control large stepper

motors like a 3 A NEMA 23.

I have included a wiring diagram and 3 example codes. In the first example, I will show

you how you can use this stepper motor driver without an Arduino library. This example

can be used to let the motor spin continuously. In the second example, we will look at how

you can control the speed, number of revolutions, and spinning direction of the stepper

motor. Finally, we will take a look at the AccelStepper library. This library is fairly easy to

use and allows you to add acceleration and deceleration to the movement of the stepper

motor.

After each example, I break down and explain how the code works, so you should have no

problems modifying it to suit your needs.

If you have any questions, please leave a comment below.

If you would like to learn more about other stepper motor drivers, then the articles below

might be useful:

https://www.makerguides.com/tb6600-stepper-motor-driver-arduino-tutorial/
https://amzn.to/2HpVx6b

2/18

Supplies

Hardware components

TB6600 stepper motor driver × 1 Amazon
 AliExpress

NEMA 23 stepper motor × 1 Amazon
 AliExpress

Arduino Uno Rev3 × 1 Amazon

Power supply (24/36 V) × 1 Amazon
 AliExpress

Jumper wires × 4 Amazon

USB cable type A/B × 1 Amazon

Tools

Wire stripper Amazon

Small screwdriver Amazon

Self-adjusting crimping pliers (recommended)* Amazon

Wire ferrules assortment (recommended)* Amazon

*Hackaday wrote a great article on the benefits of using wire ferrules (also known as end

sleeves).

Software

https://www.amazon.com/s/ref=as_li_ss_tl?k=tb6600&ref=nb_sb_noss_1&linkCode=ll2&tag=makerguides-20&linkId=fd1433071a741d50f702b5db6f423fef&language=en_US
https://www.amazon.com/s/ref=as_li_ss_tl?k=tb6600&ref=nb_sb_noss_1&linkCode=ll2&tag=makerguides-20&linkId=fd1433071a741d50f702b5db6f423fef&language=en_US
http://s.click.aliexpress.com/e/4px0TkNw
https://amzn.to/2tKghBR
https://amzn.to/2tKghBR
http://s.click.aliexpress.com/e/4AfPZY6U
https://amzn.to/374aJjX
https://amzn.to/374aJjX
https://amzn.to/374aJjX
https://amzn.to/2PKWwT7
https://amzn.to/2PKWwT7
http://s.click.aliexpress.com/e/2SKoGaog
https://amzn.to/2EG9wDc
https://amzn.to/2EG9wDc
https://amzn.to/34SBuXf
https://amzn.to/34SBuXf
https://amzn.to/2SiDQMg
https://amzn.to/2SiDQMg
https://amzn.to/2SkE0ms
https://amzn.to/2SkE0ms
https://amzn.to/376HZXV
https://amzn.to/376HZXV
https://amzn.to/2s4W6hD
https://amzn.to/2s4W6hD
https://hackaday.com/2018/04/12/to-ferrule-or-not-to-ferrule/

3/18

Arduino
IDE

Makerguides.com is a participant in the Amazon Services LLC Associates Program, an

affiliate advertising program designed to provide a means for sites to earn advertising fees

by advertising and linking to products on Amazon.com.

About the driver

The TB6600 microstepping driver is built around the Toshiba TB6600HG IC and it can

be used to drive two-phase bipolar stepper motors.

With a maximum current of 3.5 A continuous, the TB6600 driver can be used to control

quite large stepper motors like a NEMA 23. Make sure that you do not connect stepper

motors with a current rating of more than 3.5 A to the driver.

The driver has several safety functions built-in like over-current, under-voltage shutdown,

and overheating protection.

You can find more specifications in the table below. Note that the exact specifications and

dimensions can differ slightly between manufacturers. Always take a look at the datasheet

of your particular driver, before connecting power.

TB6600 Specifications

https://www.arduino.cc/en/Main/Software
https://amzn.to/2Vks43D

4/18

Operating voltage 9 – 42 V

Max output current 4.5 A per phase, 5.0 A peak

Microstep resolution full, 1/2, 1/4, 1/8 and 1/16

Protection Low-voltage shutdown, overheating and over-current protection

Dimensions 96 x 72 x 28/36 mm

Hole spacing 88, ⌀ 5 mm

Cost Check price

 These are the specifications for the TB6600HG IC, the driver itself has a maximum

current rating of 3.5 A and 4.0 A peak.

 See comment on fake/upgraded TB6600 drivers below.

For more information, you can check out the datasheet and manual below:

Toshiba TB6600 Datasheet

TB6600 Manual

Fake or ‘upgraded’ TB6600 drivers

I recently took apart one of the TB6600 drivers I ordered and found out that it didn’t

actually use a TB6600HG chip. Instead, it used a much smaller TB67S109AFTG chip, also

made by Toshiba. The performance and specifications of these chips are similar, but the

TB6600HG does have a higher peak current rating (up to 5 A) and it is just a much larger

chip with better heatsinking overall.

There is a very simple way to check if your driver uses a TB6600HG chip or a

TB67S109AFTG chip, the TB6600HG only supports up to 1/16

microstepping (see datasheet), whereas the TB67S109AFTG goes to 1/32. The main

reason manufacturers switched over to this other chip is probably price. Below you can

find links to the chips on LCSC.com which shows that the TB67S109AFTG is around $1.50

cheaper.

TB6600HG: https://lcsc.com/product-detail/Motor-

Drivers_TOSHIBA_TB6600HG_TB6600HG_C66042.html

TB67S109AFTG: https://lcsc.com/product-detail/Motor-

Drivers_TOSHIBA_TB67S109AFTG_TB67S109AFTG_C92125.html

You can buy genuine TB6600 drivers on Amazon, like this 4-axis driver board but most

use the TB67S109AFTG chip. You can tell it uses the TB6600HG chip from the pins

sticking out of the PCB and it also only goes up to 1/16 microstepping.

1

2

1

2

https://amzn.to/2Vks43D
https://www.makerguides.com/wp-content/uploads/2019/10/TB6600HG-Datasheet.pdf
https://www.makerguides.com/wp-content/uploads/2019/10/TB6600-Manual.pdf
https://lcsc.com/product-detail/Motor-Drivers_TOSHIBA_TB6600HG_TB6600HG_C66042.html
https://lcsc.com/product-detail/Motor-Drivers_TOSHIBA_TB67S109AFTG_TB67S109AFTG_C92125.html
https://amzn.to/32YNh5v

5/18

Jim from embeddedtronicsblog did some testing on the TB67S109AFTG drivers and

found that the stepper motors ran nicer than with the TB6600 drivers. So should you be

going for a genuine TB6600 or the ‘upgrade’? I would say it depends on whether you

really need the high current output or if you rather prefer up to 1/32 microstepping.

You can find the datasheet for the TB67S109AFTG below.

TB67S109AFTG Datasheet

Alternatives

Note that the TB6600 is an analog driver. In recent years, digital drivers like

the DM556 or DM542 have become much more affordable. Digital drivers usually give

much better performance and quieter operation. They can be wired and controlled in the

same way as the TB6600, so you can easily upgrade your system later.

I have used the DM556 drivers for my DIY CNC router and they have been working great

for several years.

TB6600 vs TB6560

When shopping for a TB6600 stepper motor driver, you will probably come across the

slightly cheaper TB6560 driver as well. This driver can be controlled with the same

code/wiring, but there are some key differences.

TB6560 TB6600

Operating
voltage

10 – 35 VDC, 24 VDC
recommended

9 – 42 VDC, 36 VDC
recommended

Max output
current

3 A per phase, 3.5 A peak 3.5 A per phase, 4 A peak

Current
settings

14 8

Microstep
resolution

full, 1/2, 1/8 and 1/16 full, 1/2, 1/4, 1/8, 1/16 and 1/32*

Clock frequency 15 kHz 200 kHz

Cost Check price Check price

*Drivers using TB67S109AFTG chip.

So the main differences are the higher maximum voltage, higher maximum current, and

up to 1/32 microstepping. The TB6600 also has a better heatsink and a nicer overall form

factor. If you want to control larger stepper motors or need a higher resolution, I

recommend going with the TB6600.

https://embeddedtronicsblog.wordpress.com/2018/11/07/tb67s109aftg-stepper-motor-driver-testing/
https://www.makerguides.com/wp-content/uploads/2019/10/TB67S109AFTG-Datasheet.pdf
https://amzn.to/2Zsqtc8
https://amzn.to/2ZdNm7W
https://amzn.to/30Ktl50
https://amzn.to/30Ktl50
https://amzn.to/2Vks43D

6/18

Wiring – Connecting TB6600 to stepper motor and Arduino

Connecting the TB6600 stepper motor driver to an Arduino and stepper motor is fairly

easy. The wiring diagram below shows you which connections you need to make.

TB6600 stepper motor driver with Arduino UNO and stepper motor wiring diagram

In this tutorial, we will be connecting the driver in a common cathode configuration. This

means that we connect all the negative sides of the control signal connections to ground.

The connections are also given in the table below:

TB6600 Connections

7/18

TB6600 Connection

VCC 9 – 42 VDC

GND Power supply ground

ENA- Not connected

ENA+ Not connected

DIR- Arduino GND

DIR+ Pin 2 Arduino

PUL- Arduino GND

PUL+ Pin 3 Arduino

A-, A+ Coil 1 stepper motor

B-, B+ Coil 2 stepper motor

Note that we have left the enable pins (ENA- and ENA+) disconnected. This means that

the enable pin is always LOW and the driver is always enabled.

How to determine the correct stepper motor wiring?

If you can not find the datasheet of your stepper motor, it can be difficult to figure out

which color wire goes where. I use the following trick to determine how to connect 4 wire

bipolar stepper motors:

The only thing you need to identify is the two pairs of wires which are connected to the

two coils of the motor. The wires from one coil get connected to A- and A+ and the other

to B- and B+, the polarity doesn’t matter.

To find the two wires from one coil, do the following with the motor disconnected:

1. Try to spin the shaft of the stepper motor by hand and notice how hard it is to turn.

2. Now pick a random pair of wires from the motor and touch the bare ends together.

3. Next, while holding the ends together, try to spin the shaft of the stepper motor

again.

If you feel a lot of resistance, you have found a pair of wires from the same coil. If you can

still spin the shaft freely, try another pair of wires. Now connect the two coils to the pins

shown in the wiring diagram above.

(If it is still unclear, please leave a comment below, more info can also be found on

the RepRap.org wiki)

TB6600 microstep settings

https://reprap.org/wiki/Stepper_wiring

8/18

Stepper motors typically have a step size of 1.8° or 200 steps per revolution, this refers to

full steps. A microstepping driver such as the TB6600 allows higher resolutions by

allowing intermediate step locations. This is achieved by energizing the coils with

intermediate current levels.

For instance, driving a motor in 1/2 step mode will give the 200-steps-per-revolution

motor 400 microsteps per revolution.

You can change the TB6600 microstep settings by switching the dip switches on the

driver on or off. See the table below for details. Make sure that the driver is not connected

to power when you adjust the dip switches!

Please note that these settings are for the 1/32 microstepping drivers with the

TB67S109AFTG chip. Almost all the TB6600 drivers you can buy nowadays use this chip.

Typically you can also find a table with the microstep and current settings on the body of

the driver.

Microstep table

S1 S2 S3 Microstep resolution

ON ON ON NC

ON ON OFF Full step

ON OFF ON 1/2 step

OFF ON ON 1/2 step

ON OFF OFF 1/4 step

OFF ON OFF 1/8 step

OFF OFF ON 1/16 step

OFF OFF OFF 1/32 step

Generally speaking, a smaller microstep setting will result in a smoother and quieter

operation. It will however limit the top speed that you can achieve when controlling the

stepper motor driver with an Arduino.

TB6600 current settings

You can adjust the current that goes to the motor when it is running by setting the dip

switches S4, S5, and S6 on or off. I recommend starting with a current level of 1 A. If your

motor is missing steps or stalling, you can always increase the current level later.

Current table

9/18

Current (A) Peak current S4 S5 S6

0.5 0.7 ON ON ON

1.0 1.2 ON OFF ON

1.5 1.7 ON ON OFF

2.0 2.2 ON OFF OFF

2.5 2.7 OFF ON ON

2.8 2.9 OFF OFF ON

3.0 3.2 OFF ON OFF

3.5 4.0 OFF OFF OFF

Basic TB6600 with Arduino example code

With the following sketch, you can test the functionality of the stepper motor driver. It

simply lets the motor rotate at a fixed speed.

You can upload the code to your Arduino using the Arduino IDE. For this specific

example, you do not need to install any libraries.

In the next example we will look at controlling the speed, number of revolutions and

spinning direction of the stepper motor.

You can copy the code by clicking on the button in the top right corner of the code field.

/* Example sketch to control a stepper motor with TB6600 stepper motor driver and

Arduino without a library: continuous rotation. More info:

https://www.makerguides.com */

// Define stepper motor connections:

#define dirPin 2

#define stepPin 3

void setup() {

// Declare pins as output:

pinMode(stepPin, OUTPUT);

pinMode(dirPin, OUTPUT);

// Set the spinning direction CW/CCW:

digitalWrite(dirPin, HIGH);

}

void loop() {

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(500);

digitalWrite(stepPin, LOW);

https://www.arduino.cc/en/main/software

10/18

delayMicroseconds(500);

}

As you can see, the code is very short and super simple. You don’t need much to get a

stepper motor spinning!

Code explanation

The sketch starts with defining the step (PUL+) and direction (DIR+) pins. I connected

them to Arduino pin 3 and 2.

The statement #define is used to give a name to a constant value. The compiler will

replace any references to this constant with the defined value when the program is

compiled. So everywhere you mention dirPin , the compiler will replace it with the

value 2 when the program is compiled.

// Define stepper motor connections:

#define dirPin 2

#define stepPin 3

In the setup() section of the code, all the motor control pins are declared as digital

OUTPUT with the function pinMode(pin, mode) . I also set the spinning direction of

the stepper motor by setting the direction pin HIGH. For this we use the

function digitalWrite(pin, value) .

void setup() {

// Declare pins as output:

pinMode(stepPin, OUTPUT);

pinMode(dirPin, OUTPUT);

// Set the spinning direction CW/CCW:

digitalWrite(dirPin, HIGH);

}

In the loop() section of the code, we let the driver execute one step by sending a pulse

to the step pin. Since the code in the loop section is repeated continuously, the stepper

motor will start to rotate at a fixed speed. In the next example, you will see how you can

change the speed of the motor.

void loop() {

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(500);

digitalWrite(stepPin, LOW);

delayMicroseconds(500);

}

2. Example code to control rotation, speed and direction

11/18

This sketch controls both the speed, the number of revolutions and the spinning direction

of the stepper motor.

/* Example sketch to control a stepper motor with TB6600 stepper motor driver and

Arduino without a library: number of revolutions, speed and direction. More info:

https://www.makerguides.com */

// Define stepper motor connections and steps per revolution:

#define dirPin 2

#define stepPin 3

#define stepsPerRevolution 1600

void setup() {

// Declare pins as output:

pinMode(stepPin, OUTPUT);

pinMode(dirPin, OUTPUT);

}

void loop() {

// Set the spinning direction clockwise:

digitalWrite(dirPin, HIGH);

// Spin the stepper motor 1 revolution slowly:

for (int i = 0; i < stepsPerRevolution; i++) {

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(2000);

digitalWrite(stepPin, LOW);

delayMicroseconds(2000);

}

delay(1000);

// Set the spinning direction counterclockwise:

digitalWrite(dirPin, LOW);

// Spin the stepper motor 1 revolution quickly:

for (int i = 0; i < stepsPerRevolution; i++) {

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(1000);

digitalWrite(stepPin, LOW);

delayMicroseconds(1000);

}

delay(1000);

// Set the spinning direction clockwise:

digitalWrite(dirPin, HIGH);

// Spin the stepper motor 5 revolutions fast:

for (int i = 0; i < 5 * stepsPerRevolution; i++) {

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(500);

digitalWrite(stepPin, LOW);

12/18

delayMicroseconds(500);

}

delay(1000);

// Set the spinning direction counterclockwise:

digitalWrite(dirPin, LOW);

// Spin the stepper motor 5 revolutions fast:

for (int i = 0; i < 5 * stepsPerRevolution; i++) {

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(500);

digitalWrite(stepPin, LOW);

delayMicroseconds(500);

}

delay(1000);

}

How the code works:

Besides setting the stepper motor connections, I also defined

a stepsPerRevolution constant. Because I set the driver to 1/8 microstepping mode I

set it to 1600 steps per revolution (for a standard 200 steps per revolution stepper motor).

Change this value if your setup is different.

// Define stepper motor connections and steps per revolution:

#define dirPin 2

#define stepPin 3

#define stepsPerRevolution 1600

The setup() section is the same as before, only we don’t need to define the spinning

direction just yet.

In the loop() section of the code, we let the motor spin one revolution slowly in the CW

direction and one revolution quickly in the CCW direction. Next, we let the motor spin 5

revolutions in each direction with a high speed. So how do you control the speed, spinning

direction and number of revolutions?

// Set the spinning direction clockwise:

digitalWrite(dirPin, HIGH);

// Spin the stepper motor 1 revolution slowly:

for(int i = 0; i < stepsPerRevolution; i++)

{

// These four lines result in 1 step:

digitalWrite(stepPin, HIGH);

delayMicroseconds(2000);

digitalWrite(stepPin, LOW);

delayMicroseconds(2000);

}

13/18

Control spinning direction:

To control the spinning direction of the stepper motor we set the DIR (direction) pin

either HIGH or LOW. For this we use the function digitalWrite() . Depending on how

you connected the stepper motor, setting the DIR pin high will let the motor turn CW or

CCW.

Control number of steps or revolutions:

In this example sketch, the for loops control the number of steps the stepper motor will

take. The code within the for loop results in 1 (micro)step of the stepper motor. Because

the code in the loop is executed 1600 times (stepsPerRevolution), this results in 1

revolution. In the last two loops, the code within the for loop is executed 8000 times,

which results in 8000 (micro)steps or 5 revolutions.

Note that you can change the second term in the for loop to whatever number of steps you

want. for(int i = 0; i < 800; i++) would result in 800 steps or half a revolution.

Control speed:

The speed of the stepper motor is determined by the frequency of the pulses we send to

the STEP pin. The higher the frequency, the faster the motor runs. You can control the

frequency of the pulses by changing delayMicroseconds() in the code. The shorter the

delay, the higher the frequency, the faster the motor runs.

Installing the AccelStepper library

The AccelStepper library written by Mike McCauley is an awesome library to use for your

project. One of the advantages is that it supports acceleration and deceleration, but it has

a lot of other nice functions too.

You can download the latest version of this library here or click the button below.

AccelStepper-1.59.zip

You can install the library by going to Sketch > Include Library > Add .ZIP

Library… in the Arduino IDE.

Another option is to navigate to Tools > Manage Libraries… or type Ctrl + Shift + I on

Windows. The Library Manager will open and update the list of installed libraries.

https://www.arduino.cc/reference/en/language/structure/control-structure/for/
https://www.airspayce.com/mikem/arduino/AccelStepper/index.html
https://www.makerguides.com/wp-content/uploads/2019/02/AccelStepper-1.59.zip

14/18

You can search for ‘accelstepper’ and look for the library by Mike McCauley. Select the

latest version and then click Install.

3. AccelStepper example code

With the following sketch, you can add acceleration and deceleration to the movements of

the stepper motor, without any complicated coding. In the following example, the motor

will run back and forth with a speed of 1000 steps per second and an acceleration of 500

15/18

steps per second squared.

Note that I am still using the driver in 1/8 microstepping mode. If you are using a

different setting, play around with the speed and acceleration settings.

/* Example sketch to control a stepper motor with TB6600 stepper motor driver,

AccelStepper library and Arduino: acceleration and deceleration. More info:

https://www.makerguides.com */

// Include the AccelStepper library:

#include <AccelStepper.h>

// Define stepper motor connections and motor interface type. Motor interface type must

be set to 1 when using a driver:

#define dirPin 2

#define stepPin 3

#define motorInterfaceType 1

// Create a new instance of the AccelStepper class:

AccelStepper stepper = AccelStepper(motorInterfaceType, stepPin, dirPin);

void setup() {

// Set the maximum speed and acceleration:

stepper.setMaxSpeed(1000);

stepper.setAcceleration(500);

}

void loop() {

// Set the target position:

stepper.moveTo(8000);

// Run to target position with set speed and acceleration/deceleration:

stepper.runToPosition();

delay(1000);

// Move back to zero:

stepper.moveTo(0);

stepper.runToPosition();

delay(1000);

}

Code explanation:

The first step is to include the library with #include <AccelStepper.h> .

// Include the AccelStepper library:

#include <AccelStepper.h>

The next step is to define the TB6600 to Arduino connections and the motor interface

type. The motorinterface type must be set to 1 when using a step and direction driver. You

can find the other interface types here.

// Define stepper motor connections and motor interface type. Motor interface type must

be set to 1 when using a driver:

#define dirPin 2

https://www.airspayce.com/mikem/arduino/AccelStepper/classAccelStepper.html#a608b2395b64ac15451d16d0371fe13ce

16/18

#define stepPin 3

#define motorInterfaceType 1

Next, you need to create a new instance of the AccelStepper class with the appropriate

motor interface type and connections.

In this case, I called the stepper motor ‘stepper’ but you can use other names as well, like

‘z_motor’ or ‘liftmotor’ etc. AccelStepper liftmotor =

AccelStepper(motorInterfaceType, stepPin, dirPin); . The name that you give to

the stepper motor will be used later to set the speed, position, and acceleration for that

particular motor. You can create multiple instances of the AccelStepper class with

different names and pins. This allows you to easily control 2 or more stepper motors at

the same time.

// Create a new instance of the AccelStepper class:

AccelStepper stepper = AccelStepper(motorInterfaceType, stepPin, dirPin);

In the setup(), besides the maximum speed, we need to define the

acceleration/deceleration. For this we use the

function setMaxSpeed() and setAcceleration() .

void setup() {

// Set the maximum speed and acceleration:

stepper.setMaxSpeed(1000);

stepper.setAcceleration(500);

}

In the loop section of the code, we let the motor rotate a predefined number of steps. The

function stepper.moveTo() is used to set the target position (in steps). The

function stepper.runToPostion() moves the motor (with acceleration/deceleration)

to the target position and blocks until it is at the target position. Because this function is

blocking, you shouldn’t use this when you need to control other things at the same time.

// Set the target position:

stepper.moveTo(8000);

// Run to target position with set speed and acceleration/deceleration:

stepper.runToPosition();

If you would like to see more examples for the AccelStepper libary, check out my tutorial

for the A4988 stepper motor driver:

How to control a stepper motor with A4988 driver and Arduino

Conclusion

In this article, I have shown you how to control a stepper motor with the TB6600 stepper

motor driver and Arduino. I hope you found it useful and informative. If you did,

please share it with a friend who also likes electronics and making things!

https://www.makerguides.com/a4988-stepper-motor-driver-arduino-tutorial/

17/18

I would love to know what projects you plan on building (or have already built) with this

driver. If you have any questions, suggestions, or if you think that things are missing in

this tutorial, please leave a comment down below.

Note that comments are held for moderation to prevent spam.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International License.

Beginner

How to use a SHARP GP2Y0A710K0F IR Distance Sensor with Arduino

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.makerguides.com/sharp-gp2y0a710k0f-ir-distance-sensor-arduino-tutorial/
https://www.makerguides.com/sharp-gp2y0a710k0f-ir-distance-sensor-arduino-tutorial/

18/18

How to control a stepper motor with DRV8825 driver and Arduino

How to control a Stepper Motor with Arduino Motor Shield Rev3

https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://www.makerguides.com/arduino-motor-shield-stepper-motor-tutorial/
https://www.makerguides.com/arduino-motor-shield-stepper-motor-tutorial/

