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WEBSTER’S HORN EQUATION REVISITED∗
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Abstract. The problem of low-frequency sound propagation in slowly varying ducts is system-
atically analyzed as a perturbation problem of slow variation. Webster’s horn equation and variants
in bent ducts, in ducts with nonuniform soundspeed, and in ducts with irrotational mean flow, with
and without lining, are derived, and the entrance/exit plane boundary layer is given. It is shown
why a varying lined duct in general does not have an (acoustic) solution.
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1. Introduction. Sound of long wavelength, propagating in ducts of varying
diameter like horns, is suitably described by an approximate equation, known as
Webster’s horn equation or just Webster’s equation. This is an ordinary differential
equation in the axial coordinate, and therefore forms a significant simplification of
the problem [1, 2, 3].

The usual derivation is based on the assumption of a crosswise uniform acoustic
pressure field, such that, by averaging over a duct cross section, the spatial dimensions
of the problem are reduced from three to one.

Although it shows a remarkable evidence of ingenuity and physical insight, this
derivation is mathematically unsatisfying. It is not clear (i) what exactly is the small
parameter underlying the approximation, (ii) why the pressure may be assumed to be
uniform, (iii) what the error is of the approximation, (iv) what the conditions are on
the duct geometry and on the frequency of the field, (v) how to generalize to similar
problems, (vi) how to generate higher order corrections, and (vii) what happens near
the source or duct entrance or exit plane.

An asymptotically systematic derivation of the three-dimensional (3D) classic
problem was given by Lesser and Crighton [4], extending the derivation of Lesser and
Lewis in [5, 6]. They also showed for a number of 2D configurations how abrupt
changes of the geometry (open end, slit in the wall) can be incorporated as boundary
layer regions in a setting of matched asymptotic expansion. Their approach, based on
introducing different longitudinal and lateral scales, is a special case of the method of
slow variation put forward by Van Dyke [7]. Although only an asymptotically sound
derivation is able to indicate the range of validity and the order of the error of the
approximation, we found in the literature no variants of this problem (e.g., with mean
flow [8, 9, 10, 11, 12]) that strictly follow that approach.

Particularly interesting would be an investigation of the related problems of lined
ducts without and with flow, as this would form a natural long wavelength closure of
the multiple scales theory of sound propagation in slowly varying ducts [13, 14, 15, 16].

∗Received by the editors August 9, 2002; accepted for publication (in revised form) March 3,
2005; published electronically August 3, 2005.

http://www.siam.org/journals/siap/65-6/41304.html
†Department of Mathematics and Computing Science, Eindhoven University of Technology, Eind-

hoven, The Netherlands (s.w.rienstra@tue.nl).

1981



1982 SJOERD W. RIENSTRA

Another problem of practical interest that is directly related to a systematic set-
up is the entrance problem for a 3D duct of arbitrary cross section. The structure of
the boundary layer was indicated by Lesser and Crighton [4], but they gave explicit
examples only for 2D geometries.

All in all, while the problem of long wave sound propagation in slowly varying
ducts, in various generalizations, is practically important, it still has a lot of open
ends.

We will consider various cases in detail. First, we show how a systematic ap-
proach, known as the method of slow variation coupled with ideas of matched asymp-
totic expansions, leads to the classic Webster equation for hard-walled ducts with the
entrance boundary layer. The small parameter ε is equal to the Helmholtz number,
the ratio between a typical wavelength and the duct diameter, while a typical length
scale of duct variation is of the same order of magnitude as the wavelength. Using
similar results for the related problem of heat conduction [17], this entrance problem
will be solved explicitly. It leads via matching conditions to conclusions about the
way that the O(1) duct field error (O(ε) or O(ε2)) depends on the source.

Then we will show that our problem is not essentially different in other coordinate
systems (like spherical coordinates), although special coordinates may be helpful in
obtaining a more efficient approximation. Curved ducts, with a curvature radius of
no more than the typical length scale of diameter variation, are shown to still produce
the same equation.

The same type of analysis can be applied to ducts with lined walls of, say, im-
pedance Z. It is found that for Z = O(1) only the trivial solution exists, while for
Z = O(ε) there are only nontrivial solutions possible for certain geometry-dependent
values of the wall impedance. As these impedance values vary along the duct, there
are in general no solutions possible for the full duct. A subtle functional analytic
result is used, due to Professor Jan de Graaf (TU Eindhoven), which is not available
in the literature; therefore, Prof. de Graaf was kind enough to attach his derivation
as an appendix to this paper.

We continue with more general analyses of the problem in a stagnant medium
with slowly varying sound speed, and of sound in an irrotational isentropic mean
flow, leading to generalized forms of Webster’s horn equation.

We finish with the same problem with mean flow but now extended to ducts with
lined walls. Using a recent result obtained for the related problem for high-frequency
sound propagation in lined flow ducts [16], we are able to show for Z = O(1) that
also here only a special hydrodynamic (nonacoustic) wave is possible.

2. The physical models.

2.1. The equations. In the acoustic realm of a perfect gas that we will consider,
we have for pressure p̃, velocity ṽ, density ρ̃, entropy s̃, and soundspeed c̃

dρ̃

dt
= −ρ̃∇·ṽ, ρ̃

dṽ

dt
= −∇p̃,

ds̃

dt
= 0,

ds̃ = CV
dp̃

p̃
− CP

dρ̃

ρ̃
, c̃2 =

γp̃

ρ̃
, γ =

CP

CV
,

(1)

where γ, CP , and CV are gas constants. When the flow originates from a thermo-
dynamically uniform state and consists of a stationary mean flow, with unsteady
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time-harmonic perturbations of frequency ω given, in the usual complex notation, by

ṽ = V + Re(v eiωt), p̃ = P + Re(p eiωt), ρ̃ = D + Re(ρ eiωt), s̃ = S + Re(s eiωt)

(2)

(ω > 0), we obtain for the mean flow, upon linearization for small amplitude,

∇·(DV ) = 0, D(V ·∇)V = −∇P,

(V ·∇)S = 0, S = CV logP − CP logD, C2 =
γP

D
,

(3)

and for the perturbations

iωρ + ∇·(V ρ + vD) = 0,(4a)

D
(
iω + V ·∇)v + D

(
v·∇)V + ρ(V ·∇)V = −∇p,(4b)

(iω + V ·∇)s + v·∇S = 0,(4c)

while

s =
CV

P
p− CP

D
ρ =

CV

P

(
p− C2ρ

)
.(4d)

Without mean flow, such that V = ∇P = 0, the equations may be reduced to (see
section 8)

∇·(C2∇p
)

+ ω2p = 0.(5)

If, in addition, the ambient medium is uniform, with a constant soundspeed C and
density D, the acoustic field becomes isentropic and irrotational, and we may intro-
duce a potential v = ∇φ. Furthermore, (5) reduces to the Helmholtz equation. After
introducing the free field wave number k = ω/C, we have (see sections 3, 4, 6, 7)

∇2φ + k2φ = 0.(6)

If the original flow field ṽ is irrotational and isentropic everywhere (homentropic), we
can introduce a potential for the velocity, where ṽ = ∇φ̃, and express p̃ as a function
of ρ̃ only, such that we can integrate the momentum equation (Bernoulli’s law, with
constant E) to obtain for the mean flow

1
2V

2 +
C2

γ − 1
= E, ∇·(DV ) = 0,

P

Dγ
= constant,(7)

and for the acoustic perturbations

(
iω + V ·∇)ρ + ρ∇·V + ∇·(D∇φ

)
= 0, D

(
iω + V ·∇)φ + p = 0, p = C2ρ.

(8)

These last equations are further simplified (eliminate p and ρ and use the fact that
∇·(DV ) = 0) to the rather general convected wave equation (see section 9)

D−1∇·(D∇φ
)
−
(
iω + V ·∇)[C−2

(
iω + V ·∇)φ] = 0.(9)
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Fig. 1. Sketch of geometry.

2.2. Nondimensionalization. Without further change of notation, we will as-
sume throughout this paper that the problem is made dimensionless: lengths on a
typical duct radius, time on typical sound speed / typical duct radius, etc.

2.3. The geometry. The domain of interest consists of a duct V of arbitrary
cross section, slowly varying in axial direction (see Figure 1). For definiteness, it is
given by the function Σ in cylindrical coordinates, as follows:

Σ(X, r, θ) = r −R(X, θ) ≤ 0,(10)

where X = εx � 0 is a so-called slow variable, while ε is small. A cross section A(X)
at axial position X has surface area A(X). Whenever relevant,1 we assume lengths
made dimensionless such that

A(0) = 1.

At the duct surface Σ = 0, the gradient ∇Σ is a vector normal to the surface (i.e.,
∇Σ ∝ n), while the transverse gradient ∇⊥Σ,

∇⊥ = er
∂

∂r
+ eθ

1

r

∂

∂θ
, with ∇⊥Σ = er − eθ

1

r
Rθ,(11)

(where Rθ denotes the partial derivative of R to θ) is directed in the plane of a cross
section A(X) and normal to the duct circumference ∂A. Thus if n⊥ is the component
of the surface normal vector n in the plane of a cross section, we have ∇⊥Σ ∝ n⊥.

2.4. Frequency. The frequencies considered are low, such that the correspond-
ing typical wave number is of the same order of magnitude as the length scale of the
duct variations, i.e., dimensionless O(ε−1). In order to quantify this, we will rescale
k = εκ and ω = εΩ.

3. The classical problem.

3.1. Equations and boundary conditions. The duct is semi-infinite and
hard-walled. The solution is determined by a source at entrance plane x = 0, and
radiation conditions for x → ∞. Other conditions, like a reflecting impedance plane
at some exit plane x = L (e.g., modeling a radiating open end [5] or a slit in the wall
[4]), are also possible, but they do not essentially alter the present analysis.

Inside V we have for acoustic potential φ (see (6))

∇2φ + ε2κ2φ = 0 if x ∈ V, with ∇φ·n = 0 at x ∈ ∂V.(12)

1In particular, in section 4.
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At the entrance interface x = 0 we have a suitable boundary condition, say,

φ(0, r, θ) = F (r, θ).(13)

The boundary condition of hard walls at r = R(X, θ) may be given by

∇⊥φ·∇⊥Σ = φr −
Rθ

R2
φθ = εRXφx.(14)

Except for the immediate neighborhood of the entrance plane, the typical axial vari-
ations of the acoustic field scale on the slow variable X, so we rewrite the equations
and boundary conditions as

ε2φXX + ∇2
⊥φ + ε2κ2φ = 0,(15)

with ∇φ·∇Σ = −ε2φXRX + ∇⊥φ·∇⊥Σ = 0 at r = R.

This rewriting in a slow variable is known as the method of slow variation [7]. Note
that this equation has a small parameter multiplied by the highest derivative in the
X-direction, suggesting a singular perturbation problem [4, 18, 19, 20] with boundary
layers in X.

3.2. Asymptotic analysis: Outer solution. The following outer solution
analysis will largely follow Lesser and Crighton [4], but we will give it in some detail
for two reasons. First, we will have to define the solution for the inner solution at the
entrance boundary layer to be discussed later. Second, it explicates the method of
integration along a cross section that will be used in the various other configurations
later.

Based on the observation that ε2 is the only small parameter that occurs, we
might be tempted to expand the solution in a Poincaré asymptotic power series in
ε2. However, we will see that this is not exactly true. Depending on the behavior
of the solution near the entrance, the correction term should in general be O(ε) for
matching. Nevertheless, the leading and first order equations will be equivalent. With
the assumed Poincaré expansion of φ, expressed in X,

φ(X, r, θ; ε) = φ0(X, r, θ) + εφ1(X, r, θ) + ε2φ2(X, r, θ) + · · · ,(16)

we obtain to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0 at r = R,(17)

with a solution φ0 = 0. As the solution of a Neumann problem is unique up to a
constant, φ0 = φ0(X), a function to be determined. To first order we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = 0 at r = R,(18)

also with a constant solution, and so φ1 = φ1(X), a function to be determined. To
second order we now have

∇2
⊥φ2 + φ0,XX + κ2φ0 = 0, with ∇⊥φ2·n⊥ = φ0,X

RRX√
R2 + R2

θ

at r = R.(19)

The assumption (16) that there exists a Poincaré expansion for φ, expressed in this
slow variable X, is not trivial. (Poincaré expansions are critically dependent on the
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variables chosen!) It requires certain solvability conditions for, e.g., φ2, yielding an
equation for φ0. To obtain this, we integrate along a cross section A(X) and apply
Gauss’ theorem∫∫

A
∇2
⊥φ2 dσ =

∫
∂A

∇⊥φ2·n⊥ d� =

∫
∂A

φ0,X
RRX√
R2 + R2

θ

d� = · · · .

Then we parametrize ∂A with θ such that d� =
√
R2 + R2

θ dθ, and we continue

=

∫ 2π

0

φ0,XRRX dθ = φ0,X

∫ 2π

0

RRX dθ = φ0,XAX .(20)

On the other hand, we also have∫∫
A

[
φ0,XX + κ2φ0

]
dσ = A

(
φ0,XX + κ2φ0

)
.(21)

Altogether we have for φ0 the equation

A−1
(
Aφ0,X

)
X

+ κ2φ0 = 0,(22)

which is indeed Webster’s horn equation [1, 2] in properly scaled coordinates.
Evidently, the first order solution follows the same pattern and also satisfies

A−1
(
Aφ1,X

)
X

+ κ2φ1 = 0.(23)

For completeness we note from [21, 22, 23, 24, 3] that Webster’s equation can be
recast into a more transparent form by the transformation

A(X) = d(X)2, φ = d−1ψ,(24)

leading to

ψ′′ +
(
κ2 − d′′

d

)
ψ = 0.(25)

Depending on the sign of κ2 − d′′/d, the solutions behave like propagating or expo-
nentially decaying waves. Elementary solutions are readily found for geometries with
d′′/d = m2, a constant, yielding Salmon’s family of exponential and conical horns
[21, 22].

3.3. Boundary conditions in X. The above equation for φ0 and φ1 is of
second order, and therefore two boundary conditions are required to determine the
solution. For X → ∞ we have the condition of radiation. At X = 0 (Figure 2),
φ0 and φ1 cannot satisfy the (r, θ)-dependent boundary condition (13). Indeed, as
anticipated before, near x = 0 there is a boundary layer of X = O(ε), i.e., x = O(1),
which determines the (outer) solutions φ0 and φ1 via conditions of matching. This
will be considered in the next section.

4. Entrance boundary layer. Near the entrance, for X = O(ε), i.e., x = O(1),
we have of course equation (12)

∇2φ + ε2κ2φ = 0 if x ∈ V, with ∇⊥φ·n = 0 at x ∈ ∂V.(12)



WEBSTER’S HORN EQUATION REVISITED 1987

Fig. 2. The entrance.

Up to O(ε2), this Helmholtz equation is equivalent to the Laplace equation. There-
fore, the boundary layer analysis is essentially similar to that for the heat equation,
discussed in Chandra [17]. Expand

φ(X, r, θ; ε) = Φ0(x, r, θ) + εΦ1(x, r, θ) + O(ε2)(26)

so that we have inside V to leading and first order,

O(1) : ∇2Φ0 = 0,(27a)

O(ε) : ∇2Φ1 = 0.(27b)

At x = 0 we have from (13) the initial conditions

Φ0(0, r, θ) = F (r, θ), Φ1(0, r, θ) = 0.(28)

For x → ∞ conditions of matching with the outer solution φ0 + εφ1 apply. For the
boundary condition at r = R we have to expand R(εx, θ). Note that for any function
f

f(R(εx); ε) = f(R + εxRX + O(ε2); ε) = f0(R) + ε
(
f1(R) + xf0,r(R)RX

)
+ O(ε2),

(29)

where R without any argument denotes the value at X = 0. Furthermore, we have

Rθ(X, θ)

R2(X, θ)
=

Rθ

R2
+ εx

(RX

R2

)
θ

+ O(ε2).(30)

Thus at the boundary

∇⊥φ·∇⊥Σ = φr −
Rθ

R2
φθ

(31)

= Φ0,r −
Rθ

R2
Φ0,θ + ε

[
Φ1,r −

Rθ

R2
Φ1,θ + xΦ0,rrRX − x

Rθ

R2
RXΦ0,rθ − x

(RX

R2

)
θ
Φ0,θ

]
= εRXΦ0,x,
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which means that at r = R(0, θ) for the leading and first order,

∇⊥Φ0·∇⊥Σ0 = Φ0,r −
Rθ

R2
Φ0,θ = 0,(32a)

∇⊥Φ1·∇⊥Σ0 = Φ1,r −
Rθ

R2
Φ1,θ(32b)

= RXΦ0,x − xΦ0,rrRX + x
Rθ

R2
RXΦ0,rθ + x

(RX

R2

)
θ
Φ0,θ,

where Σ0 = Σ(0, r, θ).
It is important for the subsequent matching to note that the solutions of (27) with

(32) are defined only up to a linear term Kx. For Φ0, however, this would result in
terms of O(ε−1) if x = O(ε−1), which do not match with an outer solution φ0 = O(1).
Therefore, we will not include this extra term. For Φ1, on the other hand, we will
have to retain the possibility, and in the end a linear term K1x will be added, where
K1 must be determined by the matching.

From the identity at r = R,

d

dθ
Φ0,θ = Φ0,rθRθ + Φ0,θθ,(33)

and with the defining equation applied at r = R while using relation (32a),

−Φ0,rr =
1

R
Φ0,r +

1

R2
Φ0,θθ + Φ0,xx =

Rθ

R3
Φ0,θ +

1

R2
Φ0,θθ + Φ0,xx,(34)

it follows that (32b) is equivalent to

∇⊥Φ1·∇⊥Σ0 = Q0(x, θ)(35)

def
== RXΦ0,x

∣∣
r=R

+
x

R

{
RRXΦ0,xx

∣∣
r=R

+
d

dθ

(RX

R
Φ0,θ

∣∣
r=R

)}
.

4.1. Leading order. The right-running solution Φ0 (only nonincreasing expo-
nentials are allowed for matching) may be expressed by the eigenfunction expansion

Φ0(x) =

∞∑
n=0

Fnψn(r, θ) e−λnx,(36)

where

∇2
⊥ψn + λ2

nψn = 0, ∇⊥ψn·∇⊥Σ0 = 0,(37)

with λ0 = 0, ψ0 a constant (normalized to 1), the other eigenvalues2 λn real positive,
and the eigenfunctions ψn real, orthogonal, and assumed normalized. In general these
eigenfunctions are to be determined numerically. However, if the duct is cylindrical
(i.e., R is independent of θ), we have

ψn(r, θ) := ψνμ(r, θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Jν
(
j′νμr/R

)√
π
2

(
1 − ν2

j′νμ
2

)
RJν(j′νμ)

{
cos νθ

sin νθ

}
for ν �= 0,

J0

(
j′0μr/R

)
√
πRJ0(j′0μ)

for ν = 0,

(38)

2Strictly speaking, the numbers −λ2
n are the eigenvalues of operator ∇2

⊥.
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where the index n is more practically changed into the double index (νμ). Jν is the νth
order ordinary Bessel function of the first kind [25], and j′νμ is the μth (real-valued,
positive) zero of J ′

ν . The corresponding eigenvalue is thus λn := j′νμ/R.
The amplitudes are determined from the entrance interface x = 0 as follows:

Fn =

∫∫
A(0)

F (r, θ)ψn(r, θ) dσ.(39)

Note that, as ψn are orthonormal, the axial flux is, to leading order, proportional to
the imaginary part of∫ 2π

0

∫ R

0

Φ0Φ
∗
0,xr drdθ = −

∞∑
n=1

λn|Fn|2 e−2λnx .(40)

As this expression is real, its imaginary part is zero, and thus the axial flux vanishes
to leading order. Indeed, the outer solution is a slowly varying function of X, and
therefore the flux, proportional to the axial derivative, is O(ε).

For x → ∞, the exponential terms in Φ0(x) vanish and we have

Φ0(x) 
 F0.(41)

4.2. First order. With the found expression for Φ0, the right-hand side of (35),
Q0, may be written as

Q0(x, θ) =

∞∑
n=1

Fn e−λnx

[
−RXλnψn

∣∣
r=R

+ xRXλ2
nψn

∣∣
r=R

+
x

R

d

dθ

(RX

R
ψn,θ

∣∣
r=R

)]

= R−1
∞∑

n=1

Fn

[
−λnRRX

(
x e−λnx

)
x
ψn

∣∣
r=R

+ x e−λnx
d

dθ

(RX

R
ψn,θ

∣∣
r=R

)]
.(42)

To solve the problem for Φ1, we introduce a Green’s function G(x; ξ) with x = (x, r, θ)
and ξ = (ξ, ρ, η) satisfying

∇2
⊥G +

∂2

∂x2
G = −δ(x − ξ),

∂

∂n
G = 0 at r = R(0, θ), G(x; ξ) = 0 at x = 0,

G(x; ξ) → a constant for x → ∞, x
∂

∂x
G(x; ξ) → 0 for x → ∞.

(43)

We determine the Green’s function by applying the Fourier sine transform3 with
respect to x (x → α) to (43), to obtain

∇2
⊥Ĝ− α2Ĝ = −

√
2

π
sin(αξ)δ(x⊥ − ξ⊥),(44)

where x⊥ denotes the transverse component of x, i.e., x⊥ = (r, θ) (similarly for ξ⊥).
We assume that the Green’s function can be expanded by the same basis function as
has been used for Φ0,

Ĝ(α, r, θ; ξ) =

∞∑
m=0

am(α, ξ)ψm(r, θ).

3Here f̂(α) =
√

2
π

∫∞
0 sin(αx)f(x) dx, f(x) =

√
2
π

∫∞
0 sin(αx)f̂(α) dα.
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Therefore

∇2Ĝ = −
∞∑

m=0

amλ2
mψm(r, θ).

Substituting this into (44) yields

∞∑
m=0

amψm(λ2
m + α2) =

√
2

π
sin(αξ)δ(x⊥ − ξ⊥).(45)

Next, we multiply (45) with ψn and integrate over the cross section A(0) to obtain∫∫
A(0)

∞∑
m=0

amψnψm(λ2
m + α2) dσ =

√
2

π

∫∫
A(0)

ψn(r, θ) sin(αξ)δ(x⊥ − ξ⊥) dσ.(46)

Orthonormality of the basis functions yields

am =

√
2

π

(
sin(αξ)

λ2
m + α2

)
ψm(ρ, η).(47)

Therefore,

Ĝ(α, r, θ; ξ, ρ, η) =

√
2

π

∞∑
m=0

sin(αξ)

λ2
m + α2

ψm(ρ, η)ψm(r, θ).(48)

The inverse Fourier sine transform yields

G(x; ξ) =
2

π

∞∑
m=0

ψm(ρ, η)ψm(r, θ)

∫ ∞

0

sin(αx) sin(αξ)

λ2
m + α2

dα,(49)

where [25] for λ0 = 0, ∫ ∞

0

sin(αx) sin(αξ)

α2
dα =

1

2
πmin(x, ξ),(50)

and for λm > 0,∫ ∞

0

sin(αx) sin(αξ)

λ2
m + α2

dα =
1

2
π e−λm max(x,ξ) 1

λm
sinh(λm min(x, ξ)).(51)

Therefore, the m = 0 term can be taken apart, and the Green’s function becomes

G(x; ξ) = x +

∞∑
m=1

ψm(ρ, η)ψm(r, θ) e−λmξ sinh(λmx)

λm
if 0 ≤ x ≤ ξ(52a)

= ξ +

∞∑
m=1

ψm(ρ, η)ψm(r, θ) e−λmx sinh(λmξ)

λm
if 0 ≤ ξ ≤ x.(52b)

Note that as x → ∞, G tends to ξ and ∂G
∂x tends to zero exponentially.

Using this Green’s function, we obtain for Φ1 the following relation, to be inte-
grated over domain V:

Φ1δ(x − ξ) = G∇2Φ1 − Φ1∇2G.(53)
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However, since Φ1 ∼ K1ξ for large ξ (see the remark below (32)), this yields a di-
vergent integral as the domain here is a semi-infinite duct. Therefore, we consider a
region V ′ with a finite length 0 ≤ x ≤ x0, where x0 is small compared to ε−1 but large
enough for all exponential terms to practically vanish. Integrate (53) along domain
V ′ and by using Green’s second identity we get

Φ1(ξ) =

∫∫∫
V′

(
G∇2Φ1 − Φ1∇2G

)
dx =

∫∫
x=0

(
−G

∂Φ1

∂x
+ Φ1

∂G

∂x

)
dσ

+

∫∫
r=R(0,η)

(
G∇⊥Φ1 − Φ1∇⊥G

)·n⊥ dσ +

∫∫
x=x0

(
G
∂Φ1

∂x
− Φ1

∂G

∂x

)
dσ

=

∫∫
r=R(0,η)

GQ0(x, θ)

|∇⊥Σ| d�dξ + K1ξ.(54)

Since |∇⊥Σ| = 1
R

√
R2 + R2

θ and d� =
√

R2 + R2
θ dθ, we obtain

Φ1(ξ) =

∫ 2π

0

∫ ∞

0

Q0(x, θ)G(x; ξ)|r=RR dxdθ + K1ξ.(55)

As we have Q0 in the form of a series expansion, we can write

(56) Φ1(ξ) = K1ξ +

∞∑
n=1

Fn

∫ 2π

0

[
−RRXλnψn

∣∣
r=R

∫ ∞

0

e−λnx G(x; ξ)
∣∣
r=R

dx

+

{
RRXλ2

nψn

∣∣
r=R

+
d

dθ

(RX

R
ψn,θ

∣∣
r=R

)}∫ ∞

0

x e−λnx G(x; ξ)
∣∣
r=R

dx

]
dθ.

As the series for Q0 converges uniformly for x > 0, we may exchange summation
and integration. On the other hand, the fact that all basis functions have vanishing
normal derivatives at the wall, i.e., ∇⊥ψn·n⊥ = 0, whereas ∇⊥Φ1·n⊥ �= 0, suggests
that this series does not converge uniformly near the wall.

The expression for Φ1 is further specified by removing the x-integration:

∫ ∞

0

e−λnx G(x; ξ)
∣∣∣
r=R

dx =
1 − e−λnξ

λ2
n

−
∞∑

m=1

ψm(R, θ)ψm(ρ, η)
e−λnξ − e−λmξ

λ2
n − λ2

m

,

(57)

(58)

∫ ∞

0

x e−λnx G(x; ξ)
∣∣∣
r=R

dx =
2 − (2 + λnξ) e−λnξ

λ3
n

−
∞∑

m=1

ψm(R, θ)ψm(ρ, η)
2λn(e−λnξ − e−λmξ) + ξ(λ2

n − λ2
m) e−λnξ

(λ2
n − λ2

m)2
.

If m = n, the limit λm → λn should be taken. Now we are better able to recognize
the nature of the nonuniform convergence. The dominating term is (we ignore for the
moment the θ-integration)

Φ1(ξ) ∼
∞∑

m=1

ψm(R, θ)ψm(ρ, η)

λ2
m

.
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For a circular duct this may be compared, near ρ = R, to the prototype series

∼
∞∑

m=1

cos(2πmρ/R)

m2
.

The normal derivative yields the well-known saw-tooth function that vanishes (point-
wise) at ρ = R but converges to a finite nonzero value for any ρ �= R.

For x → ∞, the exponential terms in Φ1(x) vanish and we have (we exchange the
variables x and ξ)

Φ1(x) 
 K1x +

∞∑
n=1

Fn

∫ 2π

0

[
RRXλ−1

n ψn

∣∣
ρ=R

+
2

λn

d

dη

(RX

R
ψn,η

∣∣
ρ=R

)]
dη.

By using the periodicity of ψn in its circumferential argument η, we have finally

Φ1(x) 
 K1x +

∞∑
n=1

Fn

λn

∫ 2π

0

RRXψn

∣∣
ρ=R

dη for x → ∞.(59)

4.3. Matching. Both the initial conditions for φ0 and φ1 and the constant K1

are determined from matching with the outer solution. From (41) and (59) we have

φ0(0) + Xφ0,X(0) + εφ1(0) ∼ F0 + εK1x + ε

∞∑
n=1

Fn

λn

∫ 2π

0

RRXψn

∣∣
ρ=R

dη,(60)

and so we find ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ0(0) = F0,

K1 = φ0,X(0),

φ1(0) =

∞∑
n=1

Fn

λn

∫ 2π

0

RRXψn

∣∣
ρ=R

dη.

(61)

This determines the outer solution φ0 + εφ1 (together with the radiation condition).
It wouldn’t be too difficult to guess that φ0 depends on the average source excitation
F0, but the initial value for φ1 is really subtle. The constant term in (59) is therefore
probably the most important result of this tour de force to determine Φ1.

An interesting question is then when φ1 is present at all in the outer solution (or
put in another way: what the error is if we only consider φ0). For example, φ1 is zero
when the source consists of a simple piston with just F (r, θ) = F0, or when the duct
entrance starts smoothly with RX = 0, or when RRXψn for all n > 0 are periodic
along the circumference.

Although this last condition is not very likely to be possible, for a cylindrical duct
at least the nonsymmetric modes vanish. In this case the eigenfunctions are given by
(38). The integrals in (59) vanish for all ν �= 0. As a result we have

φ1(0) = 2
√
πRRX

∞∑
μ=2

F0μ

j′0μ
.(62)

In other words, the first constant mode determines φ0, while only the nonconstant
symmetric modes determine φ1. For example, a piston tilting along a diagonal like
F ∼ r sin θ would produce a field vanishing to O(ε2), while a “piston” that is sym-
metrically folded like F ∼ r2 would produce both O(1) and O(ε) terms.
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5. Other coordinate systems. It was shown by Agullo, Barjau, and Keefe
[26] that if the shape of the hard-walled duct is described in an orthogonal coordinate
system (u, v, w) by the surface Σ(v, w) = 0, while the Helmholtz equation allows sepa-
rable solutions of the form φ(u, v, w) = F (u)G(v, w), then there exist unidimensional
(i.e., self-similar) waves in u of the type φ(u, v, w) = F (u). In this way it is possible
to produce exact solutions of certain horn shapes, like the straight and exponential
cone and others.

Although these solutions are interesting on their own, they have little to do with
the present low k asymptotic problem, where the duct wall is never outside the lateral
near field of the wave. Without this, there is no built-in mechanism that enforces the
self-similarity, so any defect of symmetry in source or surface will produce deviations
in the wave field that propagate without attenuation in other directions. Also the
generalizations that will be discussed below are not possible at all or only in very
limited form.

On the other hand, if the duct shape considered is close to one that allows such
an exact solution, it may be advantageous, in terms of practical accuracy of the final
result, to reformulate the problem in the other set of coordinates. The essence of the
asymptotic problem remains the same.

We will illustrate this for spherical coordinates (r, θ, ϕ), where we temporarily
redefine x = r cosϕ, y = r sinϕ cos θ, z = r sinϕ sin θ. (Note that we will use these
coordinates only in this section.) A circular cone around the positive x-axis is given
by ϕ = constant, and a general cone of constant cross section by ϕ = f(θ).

In order to maintain the slender shape, necessary for the asymptotics, the duct
will be long in r, compensated by a small opening angle in ϕ. We therefore introduce
the scaled variables

τ =
2 sin 1

2ϕ

ε
, R = εr(63)

and write the general duct geometry as

Σ̃(R, τ, θ) = τ − T (R, θ) = 0,(64)

where T is, by assumption, independent of ε. By this choice the surface area, Ã(R) of
any spherical cross section R = constant is now exactly (i.e., independent of ε) equal
to

Ã(R) =

∫ 2π

0

∫ ϕ(R,θ)

0

r2 sinϕdϕdθ =

∫ 2π

0

∫ T

0

r2ε2τ dτdθ

=
1

2
R2

∫ 2π

0

T 2(R, θ) dθ.(65)

Other choices for describing the duct shape are not essentially different, other than
T , and therefore Ã, becoming dependent on ε. This gives complications in the form
of extra asymptotic terms in the higher orders, which are irrelevant now.

The Helmholtz equation is given by

ε2

R2

∂

∂R

(
R2 ∂φ

∂R

)
+

1

R2τ

∂

∂τ

(
τ

(
1 − 1

4
ε2τ2

)
∂φ

∂τ

)
+

1

R2τ2(1 − 1
4ε

2τ2)

∂2φ

∂θ2
+ ε2κ2φ = 0,

(66)
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while the hard-wall boundary condition becomes

∇φ·∇Σ̃ =
1 − 1

4ε
2T 2

R2

∂φ

∂τ
− ε2 ∂T

∂R

∂φ

∂R
− 1

R2T 2(1 − 1
4ε

2T 2)

∂T

∂θ

∂φ

∂θ
= 0.(67)

We expand, as before,

φ(R, τ, θ; ε) = φ0(R, τ, θ) + ε2φ2(R, τ, θ) + · · ·

(skipping for now the O(ε)-term) to obtain to leading order

φ0,ττ +
1

τ
φ0,τ +

1

τ2
φ0,θθ = 0, with φ0,τ − Tθ

T 2
φ0,θ = 0 at τ = T.(68)

If τ and θ are read as polar coordinates, this problem is qua form the same as (17),
and thus we have the solution φ0 = φ0(R) to be determined at the next order. We
have

φ2,ττ +
1

τ
φ2,τ +

1

τ2
φ2,θθ +

(
R2φ0,R

)
R

+ R2κ2φ0 = 0,

with φ2,τ − Tθ

T 2
φ2,θ = R2TRφ0,R at τ = T.

This can be written as

∇̃2φ2 +
(
R2φ0,R

)
R

+ R2κ2φ0 = 0, with ∇̃φ2· ñ = R2φ0,R
TTR√
T 2 + T 2

θ

,(69)

where ∇̃ and ñ denote gradient and normal, respectively, in the (τ, θ)-plane. As
a result we have virtually the same equation as (19), and after integration along a
spherical surface Ã(R) in (τ, θ) and using (65), we obtain

− Ã

R2

(
R2φ0,R

)
R
− Ãκ2φ0 =

1

2
R2φ0,R

d

dR

∫ 2π

0

T 2(R, θ) dθ = R2φ0,R

( Ã

R2

)
R

or

Ã−1
(
Ãφ0,R

)
R

+ κ2φ0 = 0.(70)

We see that changing from the axial coordinate X to R and from the transverse cross
section A to the spherical cross section Ã leaves the final equation for φ0 unchanged.
Indeed, to the order considered, X and R and A and Ã are the same.

6. Curved ducts. The present results remain valid for the slightly more general
problem of curved ducts (like certain musical instruments) if the curvature of the duct
axis (and its derivative) is O(ε). Together with the assumed slow variation in the axial
coordinate, the associated orthogonal coordinate system (based on the tangent and,
possibly, the normal and binormal of the curve that describes the duct axis) leave the
Laplacian unchanged up to O(ε3).

A simple example is the inside of a perturbed torus, described by a fixed torus
radius ε−1 and slowly varying tube radius R. With local (polar-type) coordinates
ξ, r, ϕ, we define

x = ε−1(1 + εr cos θ) cos(εξ), y = ε−1(1 + εr cos θ) sin(εξ), z = r sin θ,(71)
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Fig. 3. The torus coordinates.

where 0 ≤ r ≤ R(εξ, θ), 0 ≤ θ < 2π, 0 ≤ εξ < 2π (see Figure 3). If we write X = εξ,
we get (cf. (6))

(72) ∇2φ + ε2κ2φ

= ∇2
⊥φ+ε2

(
1+εr cos θ

)−2 ∂2

∂X2
φ+ε
(
1+εr cos θ

)−1
[
cos θ

∂

∂r
φ− 1

r

∂

∂θ
φ

]
+ε2κ2φ = 0.

Boundary conditions at Σ = r −R(X, θ) = 0 are

∇⊥φ·∇⊥Σ − ε2RXφX

(1 + εr cos θ)2
= 0.(73)

If we expand φ = φ0 + εφ1 + ε2φ2 + · · · , we get to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,(74)

and so φ0 = φ0(X). Then ∂
∂rφ0 = ∂

∂θφ0 = 0, and we also have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = 0,(75)

leading to φ1 = φ1(X). Thus again ∂
∂rφ1 = ∂

∂θφ1 = 0, and we again obtain

∇2
⊥φ2 + φ0,XX + κ2φ0 = 0, with ∇⊥φ2·∇⊥Σ = φ0,XRX ,

yielding thus, after a similar argument as before, Webster’s horn equation.

7. Impedance walls. If the duct walls is equipped with an impedance-type
acoustic lining of complex impedance Z, we will in general (at least if Re(Z) > 0)
expect solutions that decay exponentially in the axial direction. Therefore, in the
compressed variable X, only trivial (i.e., zero) solutions will exist. We will see that
this is by and large the case, not only for dissipative walls with Re(Z) > 0, but for
any |Z| < ∞. Only for a purely imaginary impedance in a straight duct are there
exceptions.

The impedance-wall boundary condition at r = R is given by

∇φ·n = − iεκ

Z
φ = ζφ(76)

with specific impedance Z. As before, we assume the Poincaré expansion φ = φ0 +
εφ1 + ε2φ2 + · · · . First we note that it is easily verified that if Z = 0, only the trivial
solutions φ0 = φ1 = 0 occur. Then we consider two possibilities: Z = O(1) and
Z = O(ε).
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7.1. Z = O(1). As ζ = O(ε), we write ζ = εζ1. In this case we have only
trivial solutions. Expand equations and boundary conditions as before, to get to
leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,(77)

with solution φ0 = φ0(X), a function to be determined. To first order we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = ζ1φ0.(78)

Since ∫∫
A
∇2
⊥φ1 dσ = ζ1φ0

∫
∂A

d� = 0,(79)

we must have φ0 = 0, and so φ1 = φ1(X). Nothing changes when we continue, and
so all terms of the expansion vanish. Note that this is true for any Z.

7.2. Z = O(ε). Now we have ζ = O(1), which changes the boundary condition
expansion. To leading order we have

∇2
⊥φ0 = 0 in A, with ∇φ0·n⊥ = ζφ0 at ∂A.(80)

We would be tempted to assume that this problem has a solution or solutions for
any given Z, but this is not true. Nontrivial solutions exist only for certain ζ. From
Green’s second identity applied to φ0 and its complex conjugate, it can be deduced
that any possible ζ is real. Furthermore, from Green’s first identity applied to φ0, it
follows that any possible ζ is positive, and Z is thus negative imaginary.

But even with ζ real positive, there are only certain discrete values that allow a
solution. This is best seen as follows. The problem described in (80) is an eigenvalue
problem for the Dirichlet-to-Neumann operator Ξ: f �→ g, which maps a given Dirich-
let boundary value f to the normal derivative g of f ’s harmonic extension into A (see
[17]). In other words, Ξ(f) = ∂

∂nψ
∣∣
∂A, where ψ is the solution of

∇2ψ = 0 in A, with ψ = f at ∂A.(81)

As we are looking for Ξ(φ0) = ζφ0, equation (80) corresponds to the eigenvalue
problem of Ξ. For the present discussion it is most relevant to know that this spectrum
of eigenvalues of Ξ is discrete. As this result, due to Prof. Jan de Graaf, appears not
to be available in the literature, it is considered concisely, but in great depth, in the
appendix.

An example that illustrates this behavior explicitly is the circular duct r = R(X),
where

φ0 = f(X)
( r

R(X)

)m{cosmθ

sinmθ

}
, with ζ =

m

R(X)
,(82)

and m is a nonnegative integer. As the shape of the cross section A(X) changes with
X, the discreteness of the spectrum of Ξ implies that the values of ζ that allow a
solution also change with X, and in general there are no (nonzero) solutions possible
along a varying duct for a fixed given ζ.

This is of course not true for a duct of constant cross section, r = R(θ), although
now the asymptotics for small ε loses its meaning because there is no axial length
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scale for the acoustic wave to be compared with. The problem simplifies further for
the circular duct r = R, where (without approximation)

φ(x, r, θ) = Jm(αr) e−imθ−iγx, α2 + γ2 = k2(83)

and the boundary condition requires

αRJ ′
m(αR)

Jm(αR)
= m− αRJm+1(αR)

Jm(αR)
= ζR.(84)

This equation has infinitely many solutions, but the wave is guaranteed unattenuated
(γ real) if α is imaginary, say α = iτ . Such solutions exist for real ζ ≥ m/R, because

ζR = m− iτRJm+1(iτR)

Jm(iτR)
= m +

τRIm+1(τR)

Im(τR)
≥ m(85)

(see [27]). Note that for small k, γ, α solutions we recover (82)

ζ =
m

R
− α2R

2m + 2
+ O(α4).(86)

In other words, only solutions of this type exist near special values of ζ.

8. Variable mean soundspeed and density. If soundspeed C = C(X, r, θ)
and mean density D = D(X, r, θ) are not uniformly constant, but vary in r, θ, and
slowly in x, we have the reduced wave equation (5), rewritten in slowly varying coor-
dinates as

ε2 ∂

∂X

(
C2pX

)
+ ∇⊥·(C2∇⊥p

)
+ ε2Ω2p = 0,(87)

where the dimensionless frequency ω = εΩ is small. The hard-wall boundary condition
is the same as (14). When we expand p = p0 + εp1 + ε2p2 + · · · , we get to leading
order

∇⊥·(C2∇⊥p0

)
= 0, with ∇⊥p0·n⊥ = 0,(88)

which has a constant as the solution, so p0 = p0(X), a function to be determined.
We can derive the same equation for p1, to get the same result p1 = p1(X). For the
second order we have

∇⊥·(C2∇⊥p2

)
+

∂

∂X

(
C2p0,X

)
+ Ω2p0 = 0, with ∇⊥p2·n⊥ = p0,X

RRX√
R2 + R2

θ

.

(89)

We go on to find a solvability condition for p2 by integrating this equation along a
cross section A. Utilizing the following identity for any differentiable function f ,

d

dX

∫∫
A
f(X) dσ =

d

dX

∫ 2π

0

∫ R

0

f(X, r, θ)r drθ

=

∫ 2π

0

∫ R

0

fXr drdθ +

∫ 2π

0

f(X,R, θ)RRX dθ,(90)
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we have ∫∫
A
∇⊥·(C2∇⊥p2) dσ = p0,X

∫ 2π

0

C2RRXdθ

= p0,X

[
d

dX

∫∫
A
C2 dσ −

∫∫
A

∂

∂X
C2 dσ

]
.(91a)

Furthermore, we have∫∫
A

∂

∂X

(
C2p0,X

)
dσ = p0,X

∫∫
A

∂

∂X
C2 dσ + p0,XX

∫∫
A
C2 dσ,

and

∫∫
A

Ω2p0 dσ = Ω2p0A.(91b)

Then, after introducing the cross-sectional averaged squared soundspeed

C2 =
1

A

∫∫
A
C2 dσ,(92)

a generalization of Webster’s horn equation is obtained:

A−1
(
AC2p0,X

)
X

+ Ω2p0 = 0.(93)

This may be further simplified by the transformation

A(X)C2(X) = d(X)2, p0 = d−1ψ(94)

into

ψ′′ +

(
Ω2

C2
− d′′

d

)
ψ = 0.(95)

9. Irrotational and isentropic mean flow. To analyze asymptotically low-
frequency acoustic perturbations in a slowly varying duct with an irrotational isen-
tropic mean flow, as described by (7) and (9), we need to approximate both mean
flow and acoustic field to the same order of accuracy.

We start here with the mean flow. In the dimensionless variables used, we have
C2 = Dγ−1, so equations (7) simplify to

1
2V

2 +
Dγ−1

γ − 1
= E, ∇·(DV ) = 0.(96)

The mass flux at any cross section A is given by∫∫
A
DU dσ = F .(97)

Due to the nondimensionalization, U , D, A, F , and E are O(1). Introduce the slow
variable X = εx, and assume that V and D depend essentially on X, rather than x.
We write the velocity as

V = Uex + V⊥(98)
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to distinguish between axial and crosswise components. If flux F and thermodynam-
ical constant E are given and independent of ε, we can expand U = U0 + O(ε2) and
D = D0 +O(ε2). As the flow is a potential flow, we can derive, in the same way as in

Rienstra [14, 16], that D0 = D0(X), U0 = U0(X), and V⊥ = εṼ⊥0 +O(ε3), satisfying
the equations (to be solved numerically)

D0U0A = F ,
F2

2D2
0A

2
+

Dγ−1
0

γ − 1
= E.(99)

9.1. Mean flow and hard walls. Next we consider the acoustic field. Using
the above results for the mean flow, (9) becomes to leading order

∇2
⊥φ + ε2D−1

0

(
D0φX

)
X

= ε2

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)[
C−2

0

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)
φ

]
,

with hard wall boundary condition

∇φ·n = 0 at r = R.

We expand φ = φ0 + εφ1 + ε2φ2 + · · · . To leading order we have

∇2
⊥φ0 = 0, ∇⊥φ0·n⊥ = 0,(100)

yielding the constant solution, i.e., φ0 = φ0(X).
To first order we have the same equation. To second order we have

∇2
⊥φ2 + D−1

0

(
D0φ0,X

)
X

=

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)[
C−2

0

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)
φ0

]
,

with boundary conditions given by (19). After integration across a cross section A(X),
we obtain, similar to before, Webster’s horn equation generalized for irrotational
isentropic mean flow:

(D0A)−1(D0Aφ0,X)X =

(
iΩ + U0

∂

∂X

)[
C−2

0

(
iΩ + U0

∂

∂X

)
φ0

]
.(101)

This result seems to be equivalent to equations given by [8, 9, 10, 11, 12] and (apart
from a factor 1

2 ) [3, p. 422].

9.2. Mean flow and impedance walls. The problem with mean flow and an
impedance wall is more intricate. Instead of the duct wall boundary condition given
in (76), we have Myers’ condition [28], rewritten (see [29, 30]) as follows:

iωD
(
v·n) =

iωDp

Z
+ M

(DV p

Z

)
,(102)

where impedance Z = Z(X, θ) may be function of position, and operator M is defined
by

M(F ) = ∇·F − n·(n·∇F ).(103)
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Since M(DV p
Z ) = O(ε), we write M(DV p

Z ) = εM̃(DV p
Z ). After expanding φ =

φ0 + εφ1 + · · · and p = εp0 + · · · with

p0 = −D0

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)
φ0,(104)

we get

iΩD0

(
∇⊥φ0·n⊥) + iεΩD0

(
∇⊥φ1·n⊥) = ε

iΩD0p0

Z
+ εM̃

(D0V 0p0

Z

)
+ O(ε2),

(105)

where V 0 = U0ex + εṼ⊥0.

9.2.1. Z = O(1). As before, we get to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,

so φ0 = φ0(X) and therefore p0 = p0(X). To first order we have the same equation
∇2
⊥φ1 = 0 for φ1, but the boundary condition is now

iΩD0

(
∇⊥φ1·n⊥) =

iΩD0p0

Z
+ M̃

(D0V 0p0

Z

)
.(106)

In order to continue, we need from [16] the following property of the operator M.
For any sufficiently smooth vectorfield with f ·n = 0 at r = R, we
have∫

∂A

[
∇·f − n·(n·∇f

)] ∥∥∥∥∂r

∂x
×∂r

∂�

∥∥∥∥ d� =
d

dx

∫
∂A

(
f×n

)·d�,

where (x, �) �→ r(x, �) is a parameterization of the surface.
Since ∥∥∥∥∂r

∂x
×∂r

∂�

∥∥∥∥ =

√
1 + ε2

R2R2
X

R2 + R2
θ

= 1 + O(ε2),

we have as a result∫
∂A

M̃
(D0V 0p0

Z

)
d� =

d

dX

∫
∂A

D0U0p0

Z
d� + O(ε).

We apply this to the equation for φ1, in order to obtain an equation for φ0. From∫∫
A
∇2
⊥φ1 dσ =

∫
∂A

∇⊥φ1·n⊥ d� = 0,

together with (106) and noting that most functions depend on X only, it follows that

iΩD0p0L +
d

dX

(
U0D0p0L

)
= 0, where L(X) =

∫
∂A

1

Z
d�

(L may be interpreted as the “total admittance” at X), with solution

p0 = constant
1

U0D0L
exp

(
−i

∫ X Ω

U0(ξ)
dξ

)
.

Here φ0 follows from (104) but is more difficult to obtain in explicit form. Note that
this pressure field is not an acoustic wave, but it is of hydrodynamic nature. It does
not propagate with the soundspeed, but with the mean flow velocity.
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9.2.2. Z = O(ε). When Z = εZ0, we get for φ0 the apparently difficult bound-
ary condition

iΩD0

(
∇⊥φ0·n⊥) =

iΩD0p0

Z0
+ M̃

(D0V 0p0

Z0

)
,

which is, analogous to the no-flow case, likely to be an eigenvalue problem with
discrete eigenvalues Z0 (apart from the trivial solutions p0 = 0, φ0 = φ0(X) ∝
exp(−iΩ

∫X
U0(ξ)

−1dξ), i.e., hydrodynamically convected pressureless perturbations).
If this conjecture is true, the possible eigenvalues vary with the geometry, and no other
than the trivial solution is possible in a varying duct.

10. Conclusions. Generalizations of Webster’s classic horn equation for non-
uniform media, lined walls, and mean flow have been derived systematically, as an
asymptotic perturbation problem for low Helmholtz number and slowly varying duct
diameter. The conditions on frequency, acoustic medium, and duct geometry are
explicitly indicated in terms of small parameter ε, the ratio between a typical length
of duct variation and the duct diameter. The error and higher order corrections are
also explicitly stated.

The presence of lining in a varying duct is shown to allow in general only trivial
or merely hydrodynamic solutions. A curved duct is shown to produce the same
equation if the radius of curvature is not smaller than the typical wavelength or duct
length scale.

The approximation is nonuniform near a source or entrance. The prevailing
boundary layer solution for an arbitrary duct cross section is given, together with
the O(1) and O(ε) matching conditions to the outer (“Webster”) region. From these
expressions conditions are derived for which the O(ε)-outer field is absent.

Appendix. On the spectrum of the Dirichlet-to-Neumann operator Ξ
on smooth bounded domains in R

2. We will show that the Dirichlet-to-Neumann
operator Ξ, introduced in section 7 (see (80)), has a discrete spectrum of finite multi-
plicity. The basic idea is to relate the problem for the general simply connected open
domain Ω ⊂ R

2 (which has apparently no explicit solution), via conformal mapping,
to the corresponding problem for the unit disk D, which does have a simple explicit
solution.

Note that the related result for an annular domain is entirely analogous.

Step 1. Consider the open unit-disk D ⊂ R
2. Its boundary ∂D, the unit circle, is

parametrized by the angle θ, with 0 ≤ θ < 2π. The set of functions

en : θ �→ en(θ) =
1√
2π

einθ, n ∈ Z,(A.1)

establishes an orthonormal basis in L2(∂D; dθ).4 We introduce for real a the linear
operator Na in L2(∂D,dθ), defined via the way it acts on the basis {en},

Na : en �→ Naen, with Naen(θ) = (|n| + a)en(θ),(A.2)

followed by linear extension and closure.

4L2(U ;w(x)dx) denotes the space of square integrable functions, defined on U , with inner product∫
U f(x)g(x)w(x) dx.
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Let u : ∂D → C be a sufficiently smooth function. Let uH, the harmonic
extension of u, denote the (unique) solution of the Dirichlet problem

∇2uH(x) = 0 for x ∈ D, while uH(x) = u for x ∈ ∂D.(A.3)

The normal derivative at the boundary ∂D produces a function

∂

∂n
uH : ∂D → C.(A.4)

Altogether this defines the linear mapping u �→ ∂
∂nuH, which is called the Dirichlet-to-

Neumann operator in L2(∂D; dθ). By noting that enH(x) = (x± iy)|n| = r|n| e±i|n|θ,
and hence ∂

∂nenH = |n|en at ∂D, it is easily verified that this operator is just equal
to N0.

Step 2. Consider the bounded open domain Ω ⊂ R
2 with piecewise smooth

boundary ∂Ω. Let v : ∂Ω → C be a sufficiently smooth function. As in the previous
section (just replace D by Ω), we introduce

Ξ : v �→ Ξv =
∂

∂n
vH,(A.5)

the Dirichlet-to-Neumann operator in L2(∂Ω; dθ). Thus Ξ = N0 if Ω = D. We
want to show that Ξ is nonnegative self-adjoint with a pure point spectrum of finite
multiplicity. In the previous paragraph we showed this to be true in L2(∂D; dθ).

The self-adjointness and nonnegativity follows, formally, from Green’s first and
second identities (see section 7). In order to achieve some spectral results, we invoke
the Riemann mapping theorem and consider a conformal mapping β :D→Ω. The
supposed smoothness of ∂Ω implies that the parametrization θ �→ β(eiθ) for ∂Ω is
such that both |β′(eiθ)| and its reciprocal are bounded.

Standard results from conformal mapping theory and harmonic functions on R
2

lead to

Ξv
(
β(eiθ)

)
=

(
∂

∂n
vH

)(
β(eiθ)

)
=
∣∣β′(eiθ)

∣∣−1 ∂

∂n
(v◦β)H(eiθ).(A.6)

This means that, instead of the original problem, we could study the eigenvalue prob-
lem

BN0u = λu(A.7)

in L2(∂D,dθ), with B the multiplication operator defined by

(Bw)(θ) = B(θ)w(θ) =
∣∣β′(eiθ)

∣∣−1
w(θ).(A.8)

(Although the inverse B−1 involves no more than division by the function B(θ), we
retain for clarity the operator symbolism.)

Step 3. In order to turn the operator BN0 into a self-adjoint one, we consider
the eigenvalue problem in L2(∂D;B−1(θ)dθ), which is topologically equivalent to
L2(∂D; dθ). Note that {

θ �→ u(θ)
}
�→
{
θ �→ B− 1

2 (θ)u(θ)
}

(A.9)
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furnishes a unitary transformation from L2(∂D;B−1(θ)dθ) to L2(∂D; dθ), because∫ 2π

0

u(θ)v(θ)B−1(θ) dθ =

∫ 2π

0

(
B− 1

2 (θ)u(θ)
)(
B− 1

2 (θ)v(θ)
)
dθ.(A.10)

At the same time this implies that the eigenvalue problem (A.7) is unitary equivalent
to the eigenvalue problem

B 1
2N0B

1
2ϕ = λϕ,(A.11)

with ϕ = B− 1
2u.

Step 4. If we can show that (I+B 1
2N0B

1
2 )−1 (where I is the identity) is a compact

self-adjoint operator, we are ready. In that case it has a discrete spectrum with finite
multiplicity [31], and the same holds, a fortiori, for B 1

2N0B
1
2 .

Take a positive and sufficiently small such that θ �→ B−1(θ)−a is still positive
and uniformly bounded away from zero. By noting that Na = N0+aI, we can rewrite

I + B 1
2N0B

1
2 = B 1

2N
1
2
a

{
N− 1

2
a (B−1 − aI)N− 1

2
a + I

}
N

1
2
a B 1

2 .(A.12)

The operator between brackets, { }, is bounded, positive, and self-adjoint and has an
inverse with the same properties. We thus find(

I + B 1
2N0B

1
2

)−1
= B− 1

2N− 1
2

a

{
N− 1

2
a (B−1 − aI)N− 1

2
a + I

}−1N− 1
2

a B− 1
2 ,(A.13)

which is a composition of operators. Since the factor N− 1
2

a is compact, also (I +

B 1
2N0B

1
2 )−1 is a compact operator.
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