

- Designed for Complementary Use with the BD241 Series
- 40 W at 25°C Case Temperature
- 3 A Continuous Collector Current
- 5 A Peak Collector Current
- Customer-Specified Selections Available

TO-220 PACKAGE

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BD242		-55	
Collector emitter voltage (P. = 100 O)	BD242A	V	-70	V
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD242B	V _{CER}	-90	v
	BD242C		-115	
	BD242		-45	
Collector emitter voltage (I = 20 mA)	BD242A	V	-60	V
Collector-emitter voltage (I _C = -30 mA)	BD242B	V _{CEO}	-80	V
	BD242C		-100	
Emitter-base voltage	V _{EBO}	-5	V	
Continuous collector current	I _C	-3	Α	
Peak collector current (see Note 1)	I _{CM}	-5	Α	
Continuous base current	I _B	-1	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	40	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	2	W	
Unclamped inductive load energy (see Note 4)			32	mJ
Operating junction temperature range	T _j	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L	250	°C	

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.32 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

electrical characteristics at 25°C case temperature

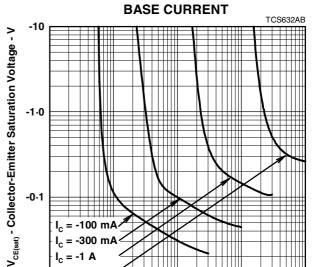
PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA (see Note 5)	I _B = 0	BD242 BD242A BD242B BD242C	-45 -60 -80 -100			٧
I _{CES}	Collector-emitter cut-off current	$V_{CE} = -55 \text{ V}$ $V_{CE} = -70 \text{ V}$ $V_{CE} = -90 \text{ V}$ $V_{CE} = -115 \text{ V}$	$V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$	BD242 BD242A BD242B BD242C			-0.2 -0.2 -0.2 -0.2	mA
I _{CEO}	Collector cut-off current	$V_{CE} = -30 \text{ V}$ $V_{CE} = -60 \text{ V}$	I _B = 0 I _B = 0	BD242/242A BD242B/242C			-0.3 -0.3	mA
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0				-1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = -4 V$ $V_{CE} = -4 V$	$I_C = -1 A$ $I_C = -3 A$	(see Notes 5 and 6)	25 10			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = -0.6 A	I _C = -3 A	(see Notes 5 and 6)			-1.2	V
V_{BE}	Base-emitter voltage	V _{CE} = -4 V	I _C = -3 A	(see Notes 5 and 6)			-1.8	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

thermal characteristics

	PARAMETER			MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			3.125	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature


	PARAMETER	TEST CONDITIONS †		MIN	TYP	MAX	UNIT	
t _{on}	Turn-on time	I _C = -1 A	$I_{B(on)} = -0.1 A$	$I_{B(off)} = 0.1 A$		0.2		μs
t _{off}	Turn-off time	$V_{BF(off)} = 3.7 \text{ V}$	$R_1 = 20 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		0.3		μs

 $[\]begin{tabular}{ll} \dagger Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. \end{tabular}$

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs **COLLECTOR CURRENT** TCS632AH 1000 V_{CE} = -4 V = 25°C t_p = 300 μs, duty cycle < 2% = 80°C h_{FE} - DC Current Gain 100 10 -0.01 -0.1 -1.0 -10 I_c - Collector Current - A

COLLECTOR-EMITTER SATURATION VOLTAGE

vs

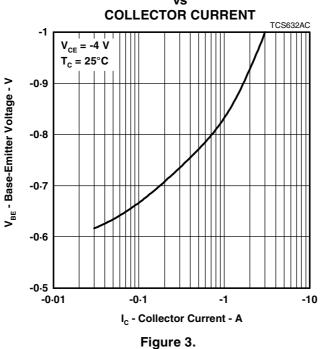
Figure 2.

-10

I_B - Base Current - mA

-100

-1000


= -300 mA = -1 A = -3 A

-0.1

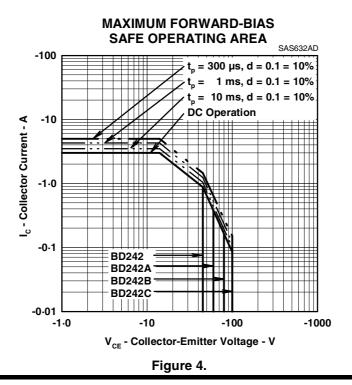
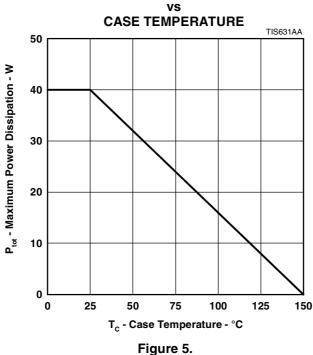

-1.0

Figure 1.



MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

PRODUCT INFORMATION

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Bourns:

BD242B BD242A BD242C BD242 BD242-S BD242A-S BD242B-S BD242C-S