

Class 1 Bluetooth[®] Module with EDR Support

Features

- Fully qualified Bluetooth[®] version 2.1 module, supports version 2.1 + Enhanced Data Rate (EDR)
- · ASCII command interface over UART
- Postage-stamp sized form factor:
 - RN41: 13.4 x 25.8 x 2 mm
 - RN41N: 13.4 x 20 x 2 mm
- Low-power (30 mA connected, < 10 mA sniff mode)
- UART (SPP or HCI) and USB (HCI only) data connection interfaces
- Sustained SPP data rates: 240 Kbps (Peripheral mode), 300 Kbps (Central mode)
- HCI data rates: 1.5 Mbps sustained, 3.0 Mbps burst in HCI mode
- Embedded Bluetooth stack profiles include: GAP, SDP, RFCOMM, L2CAP protocols, with SPP, HID and DUN profile support (does not require any host stack).
- · Bluetooth SIG qualified, end product listing
- Castellated SMT pads for easy and reliable PCB mounting
- Class 1 high-power amplifier with on-board ceramic chip antenna (RN41) or external antenna (RN41N)
- · Compliance:
 - Modular Certified for the United States (FCC) and Canada (ISED)
 - European RED Assessed Radio Module
 - Australia/New Zealand/Korea/Taiwan/Japan
 - Bluetooth SIG QDID
- Integrated Crystal, Internal Voltage Regulator, Matching Circuitry, Power Amplifier, Low Noise, Memory Amplifier and PCB Antenna
- Easy Integration into Final Product Minimize Product Development, Quicker Time to Market
- Compatible with Microchip Microcontroller Families (PIC16F, PIC18F, PIC24F/H, dsPIC33 and PIC32)
- · Up to 100 meter range

Applications

- · Cable replacement
- · Barcode scanners
- Measurement and monitoring systems
- Industrial sensors and controls
- · Medical devices

RN41/RN41 MODULE VARIANTS ⁽¹⁾				
Model Antenna Firmware Description		Description		
RN41	Ceramic Chip	4.77, 6.15	Class 1, 2.1+EDR, SPP profile	
RN41HCI	Ceramic Chip	N/A	Class 1, 2.0+EDR, HCI over UART	
RN41U	Ceramic Chip	N/A	Class 1, 2.0+EDR, HCI over USB	
RN41HID	Ceramic Chip	6.11	Class 1, 2.1+EDR, HID and SPP profiles	
RN41APL	Ceramic Chip	5.36, 5.43, 5.45	Class 1, 2.1+EDR, SPP & MFi profiles	
RN41N	External	4.77, 6.15	Class 1, 2.1+EDR, SPP profile	
RN41NAPL	External	5.36, 5.43, 5.45	Class 1, 2.1+EDR, SPP and MFi profiles	

Note: See **Section 4.0 "Ordering Information"** for customer part numbers. Information on firmware versions can be found on the RN41/RN41N product web page and the "*Bluetooth Data Module Command Reference and Advanced Information User's Guide*".

Table of Contents

1.0 Device Overview	6
2.0 Application Information	
3.0 Regulatory Approval	
4.0 Ordering Information	
Appendix A. Revision History	
Product Identification System	
The Microchip Web Site	
Customer Change Notification Service	
Customer Support	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The RN41/RN41N module is a small form factor, lowpower, class 1 Bluetooth radio that is ideal for designers who want to add wireless capability to their products without spending significant time and money developing Bluetooth-specific hardware and software. The RN41/RN41N supports multiple interface protocols, is simple to design in and is fully certified, making it a complete embedded Bluetooth solution. With its high-performance, chip antenna (RN41) or external antenna (RN41N) and support for Bluetooth EDR, the RN41/RN41N delivers up to a 3-Mbps data rate for distances up to 100 meters.

1.1 MCU Interface

The RN41/RN41N module is managed through ASCII commands via the UART and/or PIO signals. A MCU (micro-controller-unit) or host processor sends commands to module to configure features, read status and manage Bluetooth data connections.

As shown in Figure 1-1, the UART TX and RX are required to communicate with module and transfer data across Bluetooth SPP connection.

Connecting the hardware flow control lines CTS and RTS is highly recommended for applications that transmits a continuous stream of data.

The module can be configured locally via the UART or over-the-air. To support instant cable replacement, auto-discovery/pairing does not require software configuration. Additionally, the module supports auto-connect central, I/O pin (DTR) and character-based trigger modes.

TABLE 1-1: ENVIRONMENTAL CONDITIONS

Parameter	Value
Temperature Range (Operating)	-40° C ~ 85° C
Temperature Range (Storage)	-40° C ~ 85° C
Relative Humidity (Operating)	≤ 90%
Relative Humidity (Storage)	≤ 90%
Moisture Sensitivity Level	3

TABLE 1-2: ELECTRICAL CHARACTERISTICS

Parameter	Min.	Тур.	Max.	Units		
Supply Voltage (DC)	3.0	3.3	3.6	V		
RX Supply Current	—	35	60	mA		
TX Supply Current	—	65	100	mA		
Average Power Consumption						
Standby/Idle (Default Settings)	—	25	—	mA		
Connected (Normal Mode)	—	30	—	mA		
Connected (Low-Power Sniff)	—	8	—	mA		
Standby/Idle (Deep Sleep Enabled)	250	2.5		mA		

FIGURE 1-1: RN41/RN41N TO MCU INTERFACE

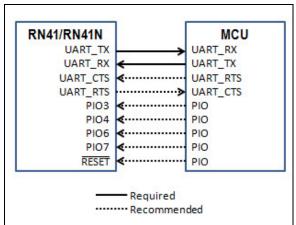


Table 1-1, Table 1-2, Table 1-3, Table 1-4 and Table 1-5 provide the module's environmental conditions, electrical characteristics, dimensions, radio characteristics and digital I/O characteristics.

1.2 ASCII Command and Data Interface

The "Bluetooth Data Module Command Reference and Advanced Information User's Guide" provides a complete description of the ASCII command and data interface for the RN41/RN41N module.

Parameter	RN41	RN41N	Units	
Size	13.4 x 25.8 x 2	13.4 x 20 x 2	mm	
Weight	0.045	0.040	0Z.	

TABLE 1-4: RADIO CHARACTERISTICS

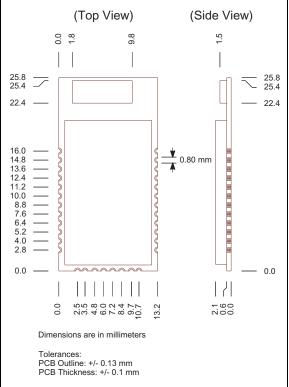

Parameter	Frequency (GHz)	Min.	Тур.	Max.	Bluetooth Specification	Units
Sensitivity at 0.1% BER	2.402		-80	-86	≤ -70	dBm
	2.441	_	-80	-86		dBm
	2.480	_	-80	-86		dBm
RF Transmit Power ⁽¹⁾	2.402		16.3	_		dBm
RN41	2.441	_	17.0	_		dBm
	2.480	_	18.4			dBm
RF Transmit Power ⁽¹⁾	2.402	_	11.9			dBm
RN41N	2.441		10.9	_		dBm
	2.480	_	9.9			dBm
Initial Carrier Frequency Tolerance	2.402		5	75	75	kHz
	2.441	_	5	75		kHz
	2.480	_	5	75		kHz
20-dB Bandwidth for Modulated Carrier	—		900	1000	≤ 1000	kHz
Drift (Five Slots Packet)	_	_	15		40	kHz
Drift Rate	—	_	13	_	20	kHz
∆f1 _{avg} Maximum Modulation	2.402	140	165	175	> 140	kHz
	2.441	140	165	175		kHz
	2.480	140	165	175		kHz
∆f2 _{avg} Minimum Modulation	2.402	140	190		115	kHz
-	2.441	140	190			kHz
	2.480	140	190			kHz

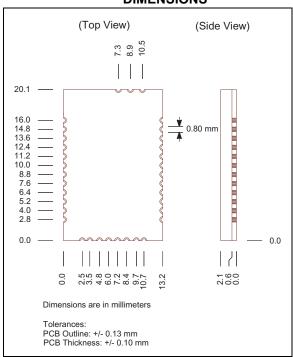
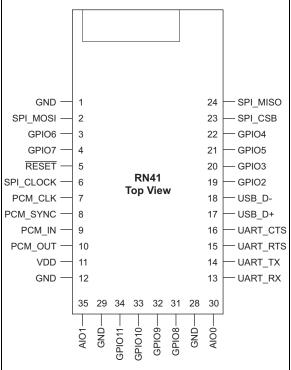
TABLE 1-5: DIGITAL I/O CHARACTERISTICS

3.0 V ≤ VDD ≤ 3.3 V	Min.	Тур.	Max.	Units
Input Logic Level Low	-0.4	_	+0.8	V
Input Logic Level High	0.7 VDD	_	VDD + 0.4	V
Output Logic Level Low	—	_	0.2	V
Output Logic Level High	VDD - 0.2	_	—	V
All I/O pins (Except reset) Default to Weak Pull Down	+0.2	+1.0	+5.0	μA

Figure 1-2 and Figure 1-3 show the modules' dimensions.

FIGURE 1-2: RN41 MODULE DIMENSIONS

FIGURE 1-3: RN41N MODULE DIMENSIONS

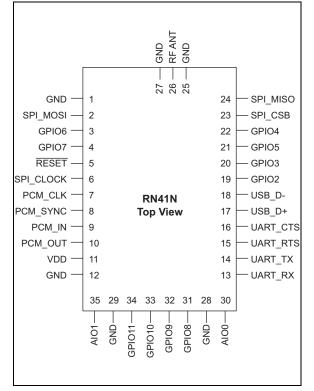

Figure 1-4 and Figure 1-5 show the pinout and Table 1-6 describes the module's pins.

FIGURE 1-5:

RN41N PIN DIAGRAM

Pin	Symbol	Туре	Description
1	GND	Power	Ground reference
2	SPI_MOSI	DI	(Optional) Factory diagnostic and test. See Section 2.8 "SPI Interface".
3	GPIO6	DIO	Set Bluetooth central (high = auto-central mode)
4	GPIO7	DIO	Set baud rate (high = force 9,600, low = 115K or firmware setting)
5	RESET	DI	Active-low Reset
6	SPI_CLK	DI	(Optional) Factory diagnostic and test. See Section 2.8 "SPI Interface".
7	PCM_CLK	DIO	(Do not connect) PCM interface ⁽¹⁾
8	PCM_SYNC	DIO	(Do not connect) PCM interface ⁽¹⁾
9	PCM_IN	DI	(Do not connect) PCM interface ⁽¹⁾
10	PCM_OUT	DO	(Do not connect) PCM interface ⁽¹⁾
11	VDD	Power	Positive Supply
12	GND	Power	Ground reference
13	UART_RX	DI	UART receive input
14	UART_TX	DO	UART transmit output
15	UART_RTS	DO	UART RTS, goes high to disable host transmitter
16	UART_CTS	DI	UART CTS, if set high, it disables transmitter
17	USB_D+	DIO	USB port. 1.5K pullup activated when USB port is ready (~500 ms after reset).
18	USB_D-	DIO	USB port
19	GPIO2	DIO	Status, high when connected, low otherwise. See Section 2.3 "Connection Status".
20	GPIO3	DIO	Auto discovery = high
21	GPIO5	DIO	Status, toggles based on state, low on connect. See Section 2.3 "Connection Status".
22	GPIO4	DIO	Set factory defaults. See Section 2.2 "Factory Reset Using GPIO4".
23	SPI_CSB	DI	(Optional) Factory diagnostic and test. See Section 2.8 "SPI Interface".
24		DO	(Optional) Factory diagnostic and test. See Section 2.8 "SPI Interface".
25	GND	Power	Ground reference (RN41N only)
26	RF ANT	AIO	Antenna, 50-Ohm impedance (RN41N only)
27	GND	Power	Ground reference (RN41N only)
28	GND	Power	Ground reference
29	GND	Power	Ground reference
30	AIOO	AIO	(Not used) Optional analog input.
31	GPIO8	DIO	UART TX/RX data activity
32	GPIO9	DIO	I/O
33	GPIO10	DIO	I/O (remote DTR signal)
34	GPIO11	DIO	I/O (remote RTS signal)
35	AIO1	AIO	(Not used) Optional analog input

TABLE 1-6: PIN DESCRIPTION

Note 1: Pin numbers 7 through 10 are reserved for future use.

2.0 APPLICATION INFORMATION

The following sections provide information on designing with the RN41/RN41N module, including radio interference, factory reset, solder reflow profile, connection status and so on.

2.1 Reset Circuit

The RN41/RN41N contains a weak internal pull-up to VCC, and the reset polarity is active low. The module's reset pin has an optional Power-on Reset circuit with a delay, which is only required if the input power supply has a very slow ramp or tends to bounce or have instability on power-up. Often a microcontroller or embedded CPU I/O is available to generate the reset once power is stable. If not, designers can use one of the many low-cost power supervisor chips available, such as the MCP809 or MCP102/121.

2.2 Factory Reset Using GPIO4

It is recommended to connect the GPIO4 pin to a switch, jumper, or resistor so it can be accessed. This pin can be used to reset the module to its factory default settings, which is critical in situations where the module has been misconfigured. To reset the module to the factory defaults, GPIO4 should be high on power-up and then toggle between low and high twice with a 1 second wait between the low-high transitions.

2.3 Connection Status

GPIO5 is available to drive an LED, and it blinks at various speeds to indicate status, see Table 2-1. GPIO2 is an output that directly reflects the connection state as shown in Table 2-2.

TABLE 2-1: GPIO5 STATUS

GPIO5 Status	Description
Toggle at 1 Hz	The module is discoverable and waiting for a connection.
Toggle at 10 Hz	The module is in command mode.
High	The module is connected to another device over Bluetooth.

TABLE 2-2:	GPIO2 STATUS

GPIO5 Status	Description
High	The module is connected to another device over Bluetooth.
Low	The module is not connected over Bluetooth.

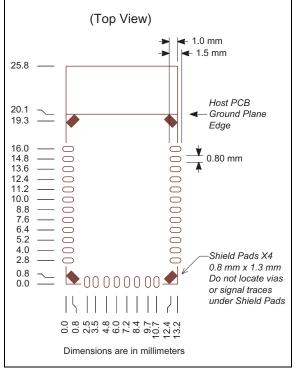

2.4 Module Mounting Details

Figure 2-1 and Figure 2-2 show the recommended PCB footprint for the RN41 and RN41N, respectively. When laying out the carrier board for the RN41 module, the areas under the antenna and shielding connections should not have surface traces, ground planes, or exposed vias.

Figure 2-3 and Figure 2-4 show the recommended mounting details for the RN41 and RN41N, respectively. For optimal radio performance, the RN41 module's antenna end should protrude at least 31 mm beyond any metal enclosure.

Figure 2-5 shows examples of good, bad and acceptable positioning of the RN41 on the host PCB.

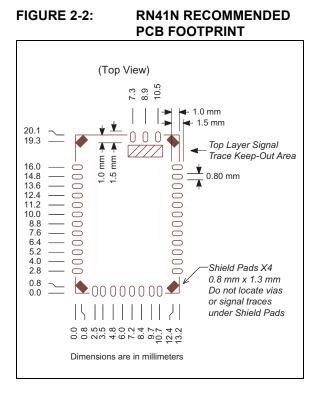
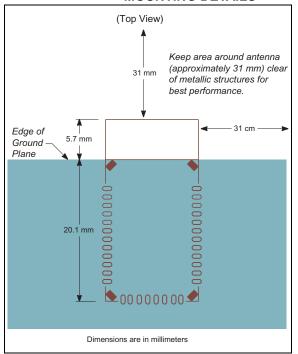
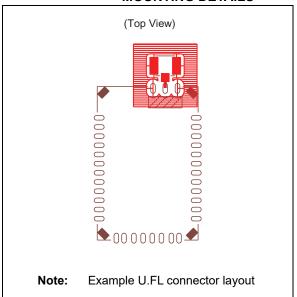




FIGURE 2-3: RN41 MODULE MOUNTING DETAILS

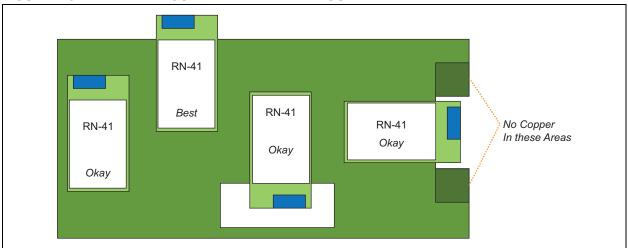


FIGURE 2-4:

RN41N MODULE MOUNTING DETAILS

2.5 External Antenna Types (RN41N)

The RN41N module's antenna pin (pin 25) provides a 50-ohm impedance to external antennas. Pin 25 can connect directly to a coaxial cable or to an antenna connector such as a U.FL or reverse polarity SMA.

The PCB trace from pin 25 to the coaxial cable or connector should be less than 0.2 inches (5 mm) for minimum loss and the best impedance match. If the PCB trace is longer, it should be a 50-ohm impedance microstrip trace. Connect adjacent ground pins 24 and 26 to a low-impedance ground on the host PCB and the antenna connection. Figure 2-4 gives example host PCB layout to a U.FL connector.

Modular certification of the RN41N module was performed with the external antenna types listed in Table 2-3. Refer to **Section 3.0 "Regulatory Approval"** for specific regulatory requirements by country.

TABLE 2-3 :	TESTED EXTERNAL
	ANTENNA TYPES

Туре	Gain (dBi)		
Monopole	0.56		
Whip	8		
Yagi	15		

2.6 HCI Mode

Microchip offers the Host Controller Interface (HCI) mode in addition to the standard operational mode of its Bluetooth modules (standard mode refers to the on-board stack running on the module).

In HCI mode, the on-board stack is bypassed and the module is put in a state that runs the Bluetooth baseband. The HCI provides a command reference interface to the baseband controller and the link manager, and provides access to the hardware status and control registers. This interface provides a uniform method for accessing the Bluetooth baseband capabilities.

In this mode, the Bluetooth stack is no longer on-board the module. It is offloaded to the interfacing host processor. The Bluetooth module is used as a radio, performing the lower level MAC functionalities, while the application stack runs on the host processor.

Using the module in HCI mode enables designers to implement profiles that are not natively supported on the Bluetooth module.

Note:	HCI mode is only available by ordering				
	part RN41HCI for UART interface; or				
	RN41U for USB interface.				

Microchip offers HCI mode in two hardware interfaces:

- HCI over UART (RN41HCI-I/RM)
- HCI over USB (RN41U-I/RM)

2.6.1 HCI OVER UART

In this mode, the hardware interface between the host processor and the Bluetooth module is the UART configured at 115.2 Kbps. You must interface the flow control signals between the host processor and the Bluetooth module for the HCl interface to work. Failure to do so can cause the host processor and the Bluetooth module to become out of sync and break the Bluetooth link.

2.6.2 HCI OVER USB

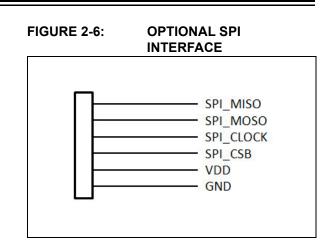
In this mode, the hardware interface between the host processor and the Bluetooth module is the USB. In this architecture, the Bluetooth module is the USB client and the host processor is the USB host.

Using the USB interface offers the advantage of a faster data link between the Bluetooth module and the host processor. With this architecture, it is possible to achieve Bluetooth's theoretical maximum throughput of 3 Mpbs.

2.7 Soldering Recommendations

The RN41/RN41N wireless module was assembled using standard lead-free reflow profile IPC/JEDEC J-STD-020.

The module can be soldered to the host PCB using standard leaded and lead-free solder reflow profiles.

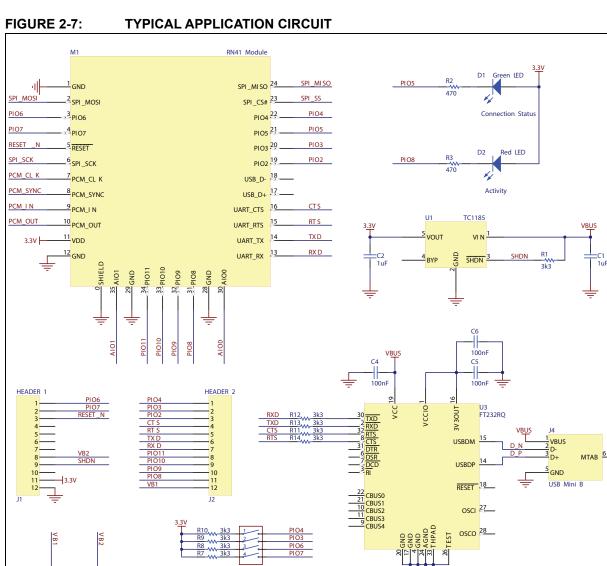

To avoid damaging the module, the following recommendations are given:

- Microchip Technology Application Note," AN233 Solder Reflow Recommendation" (DS00233) provides solder reflow recommendations
- Do not exceed peak temperature (T_p) of 250 C°
- Refer to the solder paste data sheet for specific reflow profile recommendations
- · Use no-clean flux solder paste
- Do not wash as moisture can be trapped under the shield
- Use only one flow. If the PCB requires multiple flows, apply the module on the final flow.

2.8 SPI Interface

The SPI Interface is primarily used for factory test and diagnostics. Although not required, the SPI interface is useful for restoring a corrupted flash image or enabling test modes required for certification testing.

When module is installed in a final product that requires European type approval, see **Section 3.3 "Europe"**, it is recommended that the SPI interface should be accessible via 6-pin header as shown in Figure 2-6.


2.9 Bluetooth SIG QDID

The RN41 has a QDID registered with the Bluetooth SIG. The manufacturer using the RN41 module in their end product can reference this QDID when filing an EPL (end product listing) to use Bluetooth[®] brand and logo. Please visit the Bluetooth SIG at www.bluetooth.org for more information.

Declaration ID: B013180 QDID: 7786

2.10 **Application Schematic**

Figure 2-7 shows a example application circuit. This schematic is for the RN-41-EK development tool. Refer to Section 1.1 "MCU Interface" for details on how to connect RN41/RN41N to a microcontroller.

R18 300k

AIOO

R17

[≥]100k

R15 300k

AI01

R16

100k -

V<u>BUS</u>

1uF

3.0 REGULATORY APPROVAL

This section outlines the regulatory information for the RN41/RN41N module for the following countries:

- United States
- Canada
- Europe
- Australia
- New Zealand

3.1 United States

The RN41/RN41N module has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C "Intentional Radiators" modular approval in accordance with Part 15.212 Modular Transmitter approval. Modular approval allows the end user to integrate the RN41/RN41N module into a finished product without obtaining subsequent and separate FCC approvals for intentional radiation, provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user's authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance.

The finished product is required to comply with all applicable FCC equipment authorizations regulations, requirements and equipment functions not associated with the transmitter module portion. For example, compliance must be demonstrated to regulations for other transmitter components within the host product; to requirements for unintentional radiators (Part 15 Subpart B "Unintentional Radiators"), such as digital devices, computer peripherals, radio receivers, etc.; and to additional authorization requirements for the non-transmitter functions on the transmitter module (i.e., Verification, or Declaration of Conformity) (e.g., transmitter modules may also contain digital logic functions) as appropriate.

3.1.1 LABELING AND USER INFORMATION REQUIREMENTS

The RN41/RN41N module has been labeled with its own FCC ID number and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording as follows:

RN41:

Contains Transmitter Module FCC ID: T9JRN41-3

or

Contains FCC ID: T9JRN41-3

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation

RN41N:

Contains Transmitter Module FCC ID: OA3-RN41N

or

Contains FCC ID: OA3-RN41N

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation

A user's manual for the product should include the following statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Additional information on labeling and user information requirements for Part 15 devices can be found in KDB Publication 784748 available at the FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB) https://apps.fcc.gov/oetcf/ kdb/index.cfm.

3.1.2 RF EXPOSURE

All transmitters regulated by FCC must comply with RF exposure requirements. KDB 447498 General RF Exposure Guidance provides guidance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to Radio Frequency (RF) fields adopted by the Federal Communications Commission (FCC).

From the RN41 FCC Grant: Modular Approval. Power Output listed is conducted. The antenna(s) used for this device must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. End users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF Exposure compliance. From the RN41N FCC Grant: Modular Approval. Power Output listed is conducted. The antenna(s) used for this device must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. End users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF Exposure compliance.

If the RN41/RN41N module is used in a portable application (i.e., the antenna is less than 20 cm from persons during operation), the integrator is responsible for performing Specific Absorption Rate (SAR) testing in accordance with the guidance in KDB 447498.

3.1.3 APPROVED EXTERNAL ANTENNA TYPES

To maintain modular approval in the United States, only the antenna types that have been tested shall be used. It is permissible to use different antenna manufacturer provided the same antenna type and antenna gain (equal to or less than) is used.

Testing of the RN41N module was performed with the antenna types listed in Table 2-3.

3.1.4 HELPFUL WEB SITES

Federal Communications Commission (FCC): http:// www.fcc.gov

FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB): https:// apps.fcc.gov/oetcf/kdb/index.cfm.

3.2 Canada

The RN41/RN41N module has been certified for use in Canada under Innovation, Science and Economic Development Canada (ISED, formerly Industry Canada) Radio Standards Specification (RSS) RSS-210 and RSSGen. Modular approval permits the installation of a module in a host device without the need to recertify the device.

3.2.1 LABELING AND USER INFORMATION REQUIREMENTS

Labeling Requirements for the Host Device (from RSP-100, Issue 12, Section 5): The host device shall be properly labeled to identify the module within the host device. The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labeled to display the Industry Canada certification number of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

RN-41:

Contains transmitter module IC: 6514A-RN413

RN-41N:

Contains transmitter module IC: 7693A-RN41N

User Manual Notice for License-Exempt Radio Apparatus (from Section 8.4 RSS-Gen, Issue 5, March 2019): User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both:

This device contains license-exempt transmitter(s)/ receiver(s) that comply with Innovation, Science and Economic Development Canada's licenseexempt RSS(s). Operation is subject to the following two conditions:

1. This device may not cause interference;

2. This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

1. L'appareil ne doit pas produire de brouillage;

2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Transmitter Antenna (From Section 6.8 RSS-GEN, Issue 5, March 2019): User manuals, for transmitters shall display the following notice in a conspicuous location:

This radio transmitter [IC: 6514A-RN413 and IC: 7693A-RN41N] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Le présent émetteur radio [IC: 6514A-RN413 and IC: 7693A-RN41N] a été approuvé par Innovation, Sciences et Développement économique Canadapour fonctionner avec les types d'antenne énumérés cidessous et ayant un gain admissible maximal. Les types d'antenne non inclus dans cette liste, et dont le gain est supérieur au gain maximal indiqué pour tout type figurant sur la liste, sont strictement interdits pour l'exploitation de l'émetteur.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi) and required impedance for each.

3.2.2 RF EXPOSURE

All transmitters regulated by ISED must comply with RF exposure requirements listed in RSS-102 - Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands).

3.2.3 APPROVED EXTERNAL ANTENNA TYPES

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010):

The RN41N module can only be sold or operated with antennas with which it was approved. Transmitter may be approved with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest gain antenna of each combination of transmitter and antenna type for which approval is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type having equal or lesser gain as an antenna that had been successfully tested with the transmitter, will also be considered approved with the transmitter, and may be used and marketed with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power limits. Approved external antenna types for the RN41N module are listed in Table 2-3.

3.2.4 HELPFUL WEB SITES

Industry Canada: http://www.ic.gc.ca/

3.3 Europe

The RN41/41N module is Radio Equipment Directive (RED) assessed, CE marked and have been manufactured and tested with the intention of being integrated into a final product.

The RN41/41N module has been tested to RED 2014/ 53/EU Essential Requirements mentioned in the following European Compliance table.

TABLE 3-1: EUROPEAN COMPLIANCE

Certification	Standards	Article
Safety	EN 62368	3.1a
Health	EN 62311	
Electro Magnetic	EN 301 489-1	3.1b
Compatibility (EMC)	EN 301 489-17	
Radio	EN300 328	3.2

The ETSI provides guidance on modular devices in "Guide to the application of harmonised standards covering Article 3.1b and Article 3.2 of the Directive 2014/ 53/EU RED to multi-radio and combined radio and nonradio equipment" document available at http:// www.etsi.org/deliver/etsi_eg/203300_203399/203367/ 01.01.01_60/eg_203367v010101p.pdf.

Note: To maintain conformance to the standards listed in the preceding European Compliance table, the module shall be installed in accordance with the installation instructions in this data sheet and shall not be modified. When integrating a radio module into a completed product, the integrator becomes the manufacturer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements against the RED.

3.3.1 LABELING AND USER INFORMATION REQUIREMENTS

The label on the final product which contains the RN41/ 41N module must follow CE marking requirements.

3.3.2 CONFORMITY ASSESSMENT

From ETSI Guidance Note EG 203367, section 6.1 Non-radio products are combined with a radio product:

If the manufacturer of the combined equipment installs the radio product in a host non-radio product in equivalent assessment conditions (i.e. host equivalent to the one used for the assessment of the radio product) and according to the installation instructions for the radio product, then no additional assessment of the combined equipment against article 3.2 of the RED is required.

3.3.2.1 SIMPLIFIED EU DECLARATION OF CONFORMITY

Hereby, Microchip Technology Inc. declares that the radio equipment type RN41/41N is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity for this product is available at

https://www.microchip.com/wwwproducts/en/RN41

(available under *Documents* > *Certifications*).

3.3.3 APPROVED EXTERNAL ANTENNAS

For RN41N, the approval is received using the antenna shown in Table 2-3.

3.3.4 HELPFUL WEB SITES

A document that can be used as a starting point in understanding the use of Short Range Devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation 70-03 E, which can be downloaded from the European Radio Communications Committee (ECC) at: http://www.ecodocdb.dk/.

Additional helpful web sites are:

- Radio Equipment Directive (2014/53/EU): https:// ec.europa.eu/growth/single-market/europeanstandards/harmonised-standards/red en
- European Conference of Postal and Telecommunications Administrations (CEPT): http://www.cept.org
- European Telecommunications Standards Institute (ETSI): http://www.etsi.org

The Radio Equipment Directive Compliance Association (REDCA): http://www.redca.eu/

3.4 Australia

The Australia radio regulations do not provide a modular approval policy similar to the United States (FCC) and Canada (ISED). However, RN41/RN41N module RF transmitter test reports can be used in part to demonstrate compliance in accordance with ACMA Radio communications "Short Range Devices" Standard 2004 (The Short Range Devices standard calls up the AS/NZS 4268:2008 industry standard). The RN41/ RN41N module test reports can be used as part of the product certification and compliance folder. For more information on the RF transmitter test reports, contact Microchip Technology Australia sales office.

To meet overall Australian final product compliance, the developer must construct a compliance folder containing all relevant compliance test reports e.g. RF, EMC, electrical safety and DoC (Declaration of Conformity) etc. It is the responsibility of the integrator to know what is required in the compliance folder for ACMA compliance. All test reports are available on the RN41/RN41N product web page at http://www.microchip.com. For more information on Australia compliance, refer to the Australian Communications and Media Authority web site http://www.acma.gov.au/.

3.4.1 EXTERNAL ANTENNA REQUIREMENTS

The compliance testing listed in Table 3-1 was performed using the antenna types listed in Table 2-3.

3.4.2 HELPFUL WEB SITES

The Australian Communications and Media Authority: www.acma.gov.au/.

3.5 New Zealand

The New Zealand radio regulations do not provide a modular approval policy similar to the United States (FCC) and Canada (ISED). However, RN41/RN41N module RF transmitter test reports can be used in part to demonstrate compliance against the New Zealand "General User Radio License for Short Range Devices". New Zealand Radio communications (Radio Standards) Notice 2010 calls up the AS / NZS 4268:2008 industry standard. The RN41/RN41N module test reports can be used as part of the product certification and compliance folder. All test reports are available on the RN41/RN41N product web page at http://www.microchip.com. For more information on the RF transmitter test reports, contact Microchip Technology sales office.

Information on the New Zealand short range devices license can be found in the following web links:

http://www.rsm.govt.nz/cms/licensees/types-oflicence/general-user-licences/short-range-devices

and

http://www.rsm.govt.nz/cms/policy-and-planning/spectrum-policy-overview/legislation/gazette-notices/product-compliance/radiocommunications-radiostandardsnotice-2010.

To meet overall New Zealand final product compliance, the developer must construct a compliance folder containing all relevant compliance test reports e.g. RF, EMC, electrical safety and DoC (Declaration of Conformity) etc. It is the responsibility of the developer to know what is required in the compliance folder for New Zealand Radio communications. For more information on New Zealand compliance, refer to the web site http:/ /www.rsm.govt.nz/.

3.5.1 EXTERNAL ANTENNA REQUIREMENTS

The compliance testing listed in Table 3-1 was performed using the antenna types listed in Table 2-3.

3.5.2 HELPFUL WEB SITES

Radio Spectrum Ministry of Economic Development: http://www.rsm.govt.nz/.

4.0 ORDERING INFORMATION

Table 4-1 provides ordering information for the RN41/RN41N module.

Part Number ⁽¹⁾	Firmware ⁽²⁾	Description				
RN41-I/RM	Latest Production	Class 1, 2.1+EDR, SPP profile				
RN41-I/RM615	6.15	Class 1, 2.1+EDR, SPP profile				
RN41-I/RM477	4.77	Class 1, 2.1+EDR, SPP profile				
RN41HCI-I/RM	N/A	Class 1, 2.0+EDR, HCI over UART				
RN41U-I/RM	N/A	Class 1, 2.0+EDR, HCl over USB				
RN41HID-I/RM	6.11	Class 1, 2.1+EDR, HID and SPP profiles				
RN41APL-I/RM	Latest Production	Class 1, 2.1+EDR, SPP and MFi profiles				
RN41APL-I/RM545	5.45	Class 1, 2.1+EDR, SPP and MFi profiles				
RN41APL-I/RM543	5.43	Class 1, 2.1+EDR, SPP and MFi profiles				
RN41N-I/RM	Latest Production	Class 1, 2.1+EDR, SPP profile				
RN41N-I/RM615	6.15	Class 1, 2.1+EDR, SPP profile				
RN41N-I/RM477	4.77	Class 1, 2.1+EDR, SPP profile				
RN41NAPL-I/RM	Latest Production	Class 1, 2.1+EDR, SPP and MFi profiles				
RN41NAPL-I/RM545	5.45	Class 1, 2.1+EDR, SPP and MFi profiles				
RN41NAPL-I/RM543	5.43	Class 1, 2.1+EDR, SPP and MFi profiles				

TABLE 4-1: ORDERING INFORMATION

Note 1: For other configurations, contact Microchip drectly.

2: When ordering the standard part number (customer part number without firmware version), the customer will receive the latest firmware version depending on production date and availability. It is highly recommended to order part number by specific firmware version to ensure receiving consistent firmware version. Information on firmware versions can be found on the RN41/RN41N product web page and the "*Bluetooth Data Module Command Reference and Advanced Information User's Guide*".

Go to http://www.microchip.com for current pricing and a list of distributors carrying Microchip products.

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (March 2021)

- Updated Section 3.2.1 "Labeling and User Information Requirements" and Section 3.3 "Europe"
- Updated with the new terminologies. For more details, see the below note.
 - **Note:** Microchip is aware that some terminologies used in the technical documents and existing software codes of this product are outdated and unsuitable. This document may use these new terminologies, which may or may not reflect on the source codes, software GUIs, and the documents referenced within this document. The following table shows the relevant terminology changes made in this document.

Old Terminology	New Terminology	Description	
Master	Central	Section "Features" updated with the new terminology	
		Section 1.1 "MCU Interface" updated with the new terminology	
		 Table 1-6 is updated with the new terminology 	
Slave	Peripheral	Section "Features" updated with the new terminology	
Slave	Client	Section 2.6.2 "HCI over USB" updated with the new terminology	

TABLE 1: TERMINOLOGY RELATED CHANGES

Revision A (August 2014)

This is the initial released version of the document in the Microchip format. This replaces Roving Networks RN41/RN41N Data Sheet.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	Ļ	RM	XXX	Exa	imples:	
Device	ا Temperature Range	Package	Firmware Revision Number	a)	RN41-I/RM:	Ceramic Chip Antenna Latest production firm- ware version
Device:		T. Osmania Ohin Anton		b)	RN41-I/RM615:	Ceramic Chip Antenna Firmware version 6.15
Device:	RN41 : UART, Ceramic Chip Antenna RN41N : UART, External Antenna RN41HCI: HCI over UART, Ceramic Chip A		hip Antenna	c)	RN41-I/RM477:	Ceramic Chip Antenna Firmware version 4.77
	RN41U : HCl over USB, Ceramic Chip RN41APL: SPP and MFi profiles, Cerami		d)	RN41APL-I/RM:	Ceramic Chip Antenna Latest production firmware version	
Temperature Range:	$I = -40^{\circ}C t$	o +85°C		e)	RN41APL-I/RM54	43:Ceramic Chip Antenna firmware version 5.43
Package: *	RM = Radio M	Module		f)	RN41HCI-I/RM:	Ceramic Chip Antenna HCI over UART
	*All package offeri	ngs are Pb Free (Lead	l Free)			

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7735-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Taiwan - Taipei

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

Italy - Padova

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Philippines - Manila

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Tel: 886-2-2508-8600

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

<u>RN41-I/RM</u> <u>RN41SM-I/RM</u> <u>RN41XVU-I/RM</u> <u>RN41N-I/RM</u> <u>RN41U-I/RM</u> <u>RN41R-I/RM</u> <u>RN41XVC-I/RM</u> <u>RN41HCI-</u> I/RM RN41HID-I/RM RN41APL-I/RM550 RN41-I/RM630