

Hardware Monitoring IC – I²C Interface Only

FEATURES

Monitoring Items

- 3 Thermal Inputs From Remote Thermistors or 2N3904 NPN-type Transistors or Pentium[™] II (Deschutes) thermal diode output
- 6 Voltage Inputs
 Typical for Vcore, +3.3V, +12V,
 -12V, +5V, -5V (Optional)
- 3 Fan Speed Monitoring Inputs
- WATCHDOG[™] Comparison of all Monitored Values
- Programmable Hysteresis and Setting Points (Alarm Thresholds) for all Monitored Items
- Actions Enabling
 - Beep Tone Warning
 - 2 PWM (Pulse Width Modulation) Outputs for Fan Speed Control (MUX Optional)

- Total up to 2 Sets of Fan Speed Monitoring and Controlling.
- Issues nSMI, nOVT and nGPO Signals to Activate System Protection
- Warning Signal Pop-Up in Application Software
- General
 - I²C[™] Serial Bus Interface
 - 5 VID Input Pins for CUP Vcore Identification (for Pentium[™] II)
 - Initial Power Fault Beep (for +3.3V, Vcore)
 - Vcore) IntelTM LDCM (DMI Driver 2.0) Support
 - Acer[™] ADM (DMI Driver 2.0) Support
 - Input Clock Rate Optional for 24, 48, and 14.318 MHz
 - 5V Vcc Operation
 - Package

- 24 Pin SOP

GENERAL DESCRIPTION

The MON35W82 is an enhanced version of the MON35W42. The MON35W82 can be used to monitor several critical hardware parameters of the system, including power supply voltages, fan speeds, and temperatures, which are very important for proper operation and stability of a high-end computer system. The MON35W82 provides an I^2C^{TM} serial bus interface.

An 8-bit analog-to-digital converter (ADC) is contained inside the MON35W82. The MON35W82 can monitor 6 analog voltage inputs, 3 fan tachometer inputs, and 3 remote temperatures. The remote temperature sensing can be performed by thermistors, 2N3904 NPNtype transistors, or directly from Intel's[™] Deschutes CPU thermal diode output. The MON35W82 also provides: 2 PWM (pulse width modulation) outputs for the fan speed control; beep tone output for warning; nSMI, nOVT, and nGPO signals for system protection events.

With application software such as the Intel[™] LDCM (LAN Desk Client Management) the user

can read all the monitored parameters of the system from time to time. And a pop-up warning can be activated when the monitored item drifts out of the proper/preset range. Also the user can set the upper and lower limits (alarm thresholds) of these monitored parameters and activate programmable and maskable interrupts. An optional beep tone could be used as a warning signal when the monitored parameters are out of the preset range.

Additionally, 5 VID inputs are provided to read the VID of the CPU (i.e. $\text{Pentium}^{\text{TM}}$ II) if

applicable. This will provide automatic correction of the Vcore voltage. The MON35W82 also uniquely provides an optional feature: early stage (before BIOS is loaded) beep warning. This is to detect if the fatal elements such as Vcore or 3.3V voltage fail are present.

Standard Microsystems is a registered trademark and SMSC is a trademark of Standard Microsystems Corporation. Other product and company names are trademarks or registered trademarks of their respective holders.

WATCHDOG is a registered trademark of National Semiconductor Corporation.

KEY SPECIFICATIONS

•	Voltage monitoring accuracy	±1% (Max)
•	Monitoring Temperature Range and Accuracy	
	- 40°C to +120°C	± 3°C (Max)
•	Supply Voltage	5V
•	Operating Supply Current	5 mA typ.
•	ADC Resolution	8 Bits

TABLE OF CONTENTS

KEY SPECIFICATIONS		2
PIN DESCRIPTION		6
PIN DESCRIPTION		7
FUNCTIONAL DESCRIPTION		8
GENERAL DESCRIPTION		8
Access Interface		8
ANALOG INPUTS	. 1	2
Monitor over 4.096V voltage:	. 1	3
Monitor negative voltage:	. 1	4
Monitor temperature from thermistor:	. 1	5
Monitor temperature from Pentium II [™]	. 1	5
FAN SPEED COUNT AND FAN SPEED CONTROL	. 1	6
Fan Speed Count	. 1	6
Fan Speed Control	. 1	7
TEMPERATURE MEASUREMENT MACHINE	. 1	8
Temperature Sensor 2 Interrupt Mode	. 1	9
Temperature Sensor 1 Interrupt Mode	. 2	20
Temperature Sensor 1	. 2	21
VOLTAGE AND FAN NSMI MODE	. 2	22
Voltage nSMI mode:	. 2	22
Fan nSMI mode:	. 2	22
REGISTERS AND RAM	. 2	24
CONFIGURATION REGISTER - INDEX 40H	. 2	<u>'</u> 4
INTERRUPT STATUS REGISTER 1 - INDEX 41H	. 2	25
INTERRUPT STATUS REGISTER 2 - INDEX 42H	. 2	25
nSMI Mask Register 1 - Index 43H	. 2	26
nSMI Mask Register 2 - Index 44h	. 2	<u>'</u> 7
Reserved Register — Index 45H 46H	. 2	<u>'</u> 7
VID/Fan Divisor Register - Index 47h	. 2	28
Serial Bus Address Register - Index 48h	. 2	28
Value RAM — Index 20H- 3Fh or 60H - 7Fh	. 2	<u>'9</u>
Voltage ID (VID4) & Device ID - Index 49H	. 3	31
TEMPERATURE 2 AND TEMPERATURE 3 SERIAL BUS ADDRESS REGISTERINDEX 4AH	. 3	51
PIN CONTROL REGISTER - INDEX 4BH	. 3	\$2
nIRQ/NOVT PROPERTY SELECT - INDEX 4CH	. 3	3
FAN IN/OUT AND BEEP/NGPO CONTROL REGISTER - INDEX 4DH	. 3	54
REGISTER 50H ~ 5FH BANK SELECT - INDEX 4EH	. 3	5
SMSC VENDOR ID - INDEX 4FH	. 3	5
SMSC TEST REGISTER INDEX 50H - 55H (BANK 0)	. 3	6
BEEP CONTROL REGISTER 1 INDEX 56H (BANK 0)	. 3	6

	BEEP CONTROL REGISTER 2 INDEX 57H (BANK 0)	37
	CHIP ID INDEX 58H (BANK 0)	38
	RESERVED REGISTER INDEX 59H (BANK 0)	38
	PWMOUT1 CONTROL REGISTER INDEX 5AH (BANK 0)	38
	PWMOUT2 CONTROL REGISTER INDEX 5BH (BANK 0)	39
	PWMOUT1/2 CLOCK SELECT REGISTER INDEX 5CH (BANK 0)	39
	FAN DIVISOR CONTROL REGISTER INDEX 5DH (BANK 0)	40
	RESERVED REGISTER INDEX 5EH (BANK 0)	41
	RESERVED REGISTER INDEX 5FH (BANK 0)	41
	TEMPERATURE SENSOR 1 TEMPERATURE (HIGH BYTE) REGISTER - INDEX 00H	41
	TEMPERATURE SENSOR 1 TEMPERATURE (LOW BYTE) REGISTER - INDEX 00H	41
	TEMPERATURE SENSOR 1 CONFIGURATION REGISTER - INDEX 01H	42
	TEMPERATURE SENSOR 1 HYSTERESIS (HIGH BYTE) REGISTER - INDEX 02H	43
	TEMPERATURE SENSOR 1 HYSTERESIS (LOW BYTE) REGISTER - INDEX 02H	43
	TEMPERATURE SENSOR 1 OVER-TEMPERATURE (HIGH BYTE) REGISTER - INDEX 03H	44
	TEMPERATURE SENSOR 1 OVER-TEMPERATURE (LOW BYTE) REGISTER - INDEX 03H	44
	RESERVED REGISTER INDEX 50H52H (BANK4)	45
	BEEP CONTROL REGISTER 3 INDEX 53H (BANK 4)	45
	RESERVED REGISTER INDEX 54H58H (BANK 4)	45
	REAL TIME HARDWARE STATUS REGISTER I INDEX 59H (BANK 4)	45
	REAL TIME HARDWARE STATUS REGISTER II INDEX 5AH (BANK 4)	46
S	PECIFICATIONS	47
	ABSOLUTE MAXIMUM RATINGS	47
	DC CHARACTERISTICS	47
	AC CHARACTERISTICS	49
	Serial Bus Timing Diagram	49
P	ACKAGE DIMENSIONS	50

80 Arkay Drive Hauppauge, NY 11788 (516) 435-6000 FAX (516) 273-3123

PIN CONFIGURATION

PIN DESCRIPTION

PIN NAME	PIN NO.	TYPE	DESCRIPTION
VID4	1	IN _t	Voltage Supply readouts from Pentium II [™] .
FANIN1	2	IN _{ts}	0V to 5V amplitude fan tachometer input.
FANIN2	3	IN _{ts}	0V to 5V amplitude fan tachometer input.
FANIN3 /	4	IN _{ts} /	0V to 5V amplitude fan tachometer input.
PWMOUT1		OUT _{12t}	Fan speed control (PWM) output.
			This multi-functional pin is programmable.
nOVT	5	OUT _{12t}	Over temperature Shutdown Output.
BEEP/nGP	6	OD ₄₈	Beep (Default) / General purpose output
0			This multi-functional pin is programmable.
VID3	7	IN _t	Voltage Supply readouts from Pentium II [™] .
CLKIN	8	IN _t	System clock input. Can select 48MHz or 24MHz or 14.318MHz. The default is 24MHz.
nSMI /	9	OD ₁₂ /	System Management Interrupt (open drain). The default state is disabled.
PWMOUT2		OUT _{12t}	Fan speed control (PWM) output.
			This multi-functional pin is programmable.
GNDD	10	DGROUND	Internally connected to all digital circuitry.
SCL	11	INts	Serial Bus Clock.
SDA	12	I/O _{12ts}	Serial Bus bi-directional Data.
VID2	13	IN _t	Voltage Supply readouts from Pentium II [™] .
VID1	14	IN _t	Voltage Supply readouts from Pentium II [™] .
VID0	15	IN _t	Voltage Supply readouts from Pentium II [™] .
GNDA	16	AGROUND	Internally connected to all analog circuitry. The ground reference for all analog inputs.
-5VIN /	17	AIN	0V to 4.096V FSR Analog Inputs (Default).
VT2 /			Thermistor 2 terminal input.
PII2			Pentium II [™] thermal 2 diode input.
			This multi-functional pin is programmable.
-12VIN	18	AIN	0V to 4.096V FSR Analog Inputs.
+12VIN	19	AIN	0V to 4.096V FSR Analog Inputs.
+3.3VIN	20	AIN	0V to 4.096V FSR Analog Inputs.
VCOREA	21	AIN	0V to 4.096V FSR Analog Inputs.
VREF	22	AOUT	Reference Voltage.
VT1 /	23	AIN	Thermistor 1 terminal input. /
PII1			Pentium II [™] thermal diode 1 input.
V _{CC} (+5V)	24	POWER	+5V V_{CC} power. Bypass with the parallel combination of
			$10\mu F$ (electrolytic or tantalum) and $0.1\mu F$ (ceramic)
			bypass capacitors.

PIN DESCRIPTION

I/O _{12t}	TTL level bi-directional pin with 12 mA source-sink capability
I/O _{12ts}	TTL level and schmitt trigger
OUT ₁₂	Output pin with 12 mA source-sink capability
AOUT	Output pin(Analog)
OD ₁₂	Open-drain output pin with 12 mA sink capability
INt	TTL level input pin
IN _{ts}	TTL level input pin and schmitt trigger
AIN	Input pin(Analog)

FUNCTIONAL DESCRIPTION

GENERAL DESCRIPTION

The MON35W82 provides 6 analog positive inputs, 3 fan speed monitor inputs, 2 PWM (Pulse Width Modulation) output controls, 2 sets for fan PWM (Pulse Width Modulation) control, 2 thermal inputs from remote thermistors or 2N3904 transistors or Penitum[™] II (Deschutes) thermal diode outputs, a beep function output and a monitor function for the voltage, temperature and fan counters. Once the monitor function is initiated, the watchdog monitors each function and stores the value. If the monitored value is not within the limits values, the interrupt status is set and an interrupt can be generated.

Access Interface

The MON35W82 provides an I²C Serial Bus to read/write internal registers. There are two serial bus address registers, CR[48h] and CR[4Ah] used to read/write all of the internal registers. CR[48h] (default value 0101101) is used to access all registers excluding the Bank 1 temperature sensor registers. CR[4Ah] (default value 1001001) is used to access the Bank 1 temperature sensor registers.

The serial bus access timings are shown in the following figures.

FIGURE 1 - SERIAL BUS WRITE TO INTERNAL ADDRESS REGISTER FOLLOWED BY THE DATA BYTE

FIGURE 2 - SERIAL BUS WRITE TO INTERNAL ADDRESS REGISTER ONLY

FIGURE 3 - SERIAL BUS READ FROM A REGISTER WITH THE INTERNAL ADDRESS REGISTER PRESET TO DESIRED LOCATION

The serial bus timing of the temperature 2 and 3 is shown below:

FIGURE 4 - TYPICAL 2-BYTE READ FROM PRESET POINTER LOCATION (TEMP, T_{os} , T_{HYST})

FIGURE 5 - TYPICAL POINTER SET FOLLOWED BY IMMEDIATE READ FOR 2-BYTE REGISTER (TEMP, T_{os}, T_{HYST})

FIGURE 6 - TYPICAL READ 1-BYTE FROM CONFIGURATION REGISTER WITH PRESET POINTER

FIGURE 7 - TYPICAL POINTER SET FOLLOWED BY IMMEDIATE READ FROM CONFIGURATION REGISTER

FIGURE 8 - TEMPERATURE 2/3 CONFIGURATION REGISTER WRITE

FIGURE 9 - TEMPERATURE 2/3 Tos AND THYST WRITE

ANALOG INPUTS

The analog inputs are normally used to monitor the PC power supplies. The 8-bit ADC has a 16mv LSB and supports an input range of 0V to 4.096V. The CPU V-core, 3.3V and battery voltage can be directly connected to these analog inputs. Voltages higher than 4.096V must be reduced to the specified input range. An example using external resistors is shown in Figure 10.

Monitor over 4.096V voltage:

The input voltage +12VIN can be expressed as following equation.

$$12VIN = V_1 \times \frac{R_2}{R_1 + R_2}$$

The value of R1 and R2 can be selected as 28K Ohms and 10K Ohms, respectively, when the input voltage V1 is 12V. The node voltage of +12VIN must be less than 4.096V for the maximum input range of the 8-bit ADC. The Vcc Pin (Pin 24) is connected to the power supply VCC (+5V). There are two functions in this pin. The first function is to supply internal analog power in the MON35W82 and the second

function is to monitor this voltage. The Vcc Pin is connected to internal serial resistors to monitor the +5V voltage. The value of two serial resistors are 34K ohms and 50K ohms so that the input voltage to the ADC is 2.98V which is less than 4.096V of ADC maximum input voltage. The voltage equation can be represented as follows.

$$V_{in} = VCC \times \frac{50 K\Omega}{50 K\Omega + 34 K\Omega} \cong 2.98V$$

where VCC is set to 5V.

Monitor negative voltage:

The negative voltage should be connected to two series resistors and a positive voltage VREF (equal to 3.6V). In Figure 10, voltages V3 and V4 are two negative voltages, -12V and -5V respectively. The voltage V3 is connected to two series resistors and then is connected to VREF which is a positive voltage. The voltage on node N12VIN must be between 0V and 4.096V. If R5=232K ohms and R6=56K ohms, the input voltage of node N12VIN can be calculated as follows:

$$N12 VIN = (VREF + |V_3|) \times (\frac{232 K\Omega}{232 K\Omega + 56 K\Omega}) + V_3$$

where VREF is equal 3.6V.

If the V_3 is equal to -12V then the voltage is equal to 0.567V and the converted hexadecimal data is set to 35h by the 8-bit ADC with 16mV-

LSB.This monitored value should be converted to the real negative voltage and the express equation is shown as follows.

$$V_3 = \frac{N12VIN - VREF \times \boldsymbol{b}}{1 - \boldsymbol{b}}$$

Where \boldsymbol{b} is 232K/(232K+56K). If the N2VIN is 0.567 then the V3 is approximately equal to -12V.

The another negative voltage input V6 (approximate -5V) can also be evaluated by a similar method and the serial resistors can be

selected with R7=120K ohms and R8=56K ohms. The expression equation of V6 With -5V voltage is shown as follows.

$$V_6 = \frac{N5VIN - VREF \times \boldsymbol{g}}{1 - \boldsymbol{g}}$$

Where the Υ is set to 120K/(120K+56K). If the monitored ADC value in the N5VIN channel is 0.8635, VREF=3.6V and the parameter Υ is

0.6818 then the negative voltage of V6 can be evaluated to be -5V.

Monitor temperature from thermistor:

The MON35W82 can connect to three thermistors to measure three different environmental temperatures. The specification of the thermistors are (1) β value is 3435K, (2) resistor value is 10K ohms at 25°C. In Figure 10, the thermistor R_{THM} is connected to VT1 and VT1 is connected through a 10K ohm series resistor to VREF.

Monitor temperature from Pentium II[™] thermal diode or bipolar transistor 2N3904

The MON35W82 can interface to the Pentium II[™] (Deschutes) thermal diode interface or a 2N3904 transistor. The circuit connection is shown in Figure 11. The Pentium II[™] D- pin is connected to ground (GND) and the D+ pin is connected to the PII1 or PII2 pin of the MON35W82. A 30K-ohm resistor must be connected from the PIIx pin to the VREF pin to supply the diode bias current and a bypass capacitor C=3300pF must be added to filter the high frequency noise. If a 2N3904 transistor is used, the Base (B) and Collector (C) must be tied together to act as a thermal diode.

FIGURE 11

FAN Speed Count and FAN Speed Control

Fan Speed Count

Inputs are provides for signals from fans equipped with tachometer outputs. The level of these signals should be set to TTL level, and the maximum input voltage can not be over +5.5V.

If the input signals from the tachometer outputs are over the VCC, the external trimming circuit should be added to reduce the voltage to obtain the input specification. The normal circuit and trimming circuits are shown in Figure 12.

Determine the fan counter according to:

$$Count = \frac{1.35 \times 10^6}{RPM \times Divisor}$$

Once the fan speed counter has been read from register CR28, CR29 or CR2A, the fan speed

can be evaluated by the following equation.

$$RPM = \frac{1.35 \times 10^6}{Count \times Divisor}$$

The default divisor is 2 and defined at CR47.bit7:4, CR4B.bit7:6, and Bank0 CR5D.bit5:7 which are three bits for the divisor. These provide support for very low speed fans

such as power supply fans. The followed table is an example for the relation of divisor, RPM, and count.

		TIME PER			
DIVISOR	NOMINAL RPM	REVOLUTION	COUNTS	70% RPM	TIME FOR 70%
1	8800	6.82 ms	153	6160	9.74 ms
2 (default)	4400	13.64 ms	153	3080	19.48 ms
4	2200	27.27 ms	153	1540	38.96 ms
8	1100	54.54 ms	153	770	77.92 ms
16	550	109.08 ms	153	385	155.84 ms
32	275	218.16 ms	153	192	311.68 ms
64	137	436.32 ms	153	96	623.36 ms
128	68	872.64 ms	153	48	1246.72 ms

Fan Speed Control

The MON35W82 provides four pins for fan PWM speed control. The duty cycle of the PWM can be programmed by an 8-bit register which is

defined in Bank0 CR5A and CR5B. The default duty cycle is set to 100%, that is, the default 8bit register is set to FFh. The duty cycle can be represented as follows:

$$Duty cycle(\%) = \frac{Programmed \ 8-bit \ Register \ Value}{255} \times 100 \ \%$$

The PWM clock frequency also can be program and defined in the Bank0.CR5C. The application circuit is shown in Figure 13.

Temperature Measurement Machine

The temperature data format is 8-bit two'scomplement for sensor 2 and 9-bit two complement for sensor 1. The 8-bit temperature data can be obtained by reading CR[27h]. The 9-bit temperature data can be obtained by reading the 8 MSBs from the Bank1 CR[50h] and the LSB from the Bank1 CR[51h] bit 7. The format of the temperature data is show in the following table.

	8-BIT DIGITAL	OUTPUT	9-BIT DIGITAL	OUTPUT
TEMPERATURE	8-Bit Binary	8-Bit Hex	9-Bit Binary	9-Bit Hex
+125øC	0111,1101	7Dh	0,1111,1010	0FAh
+25øC	0001,1001	19h	0,0011,0010	032h
+1øC	0000,0001	01h	0,0000,0010	002h
+0.5øC	-	-	0,0000,0001	001h
+0øC	+0øC 0000,0000		0,0000,0000	000h
-0.5øC	-	-	1,1111,1111	1FFh
-1øC	1111,1111	FFh	1,1111,1110	1FFh
-25øC	1110,0111	E7h	1,1100,1110	1CEh
-55øC	1100,1001	C9h	1,1001,0010	192h

Temperature Sensor 2 Interrupt Mode

The MON35W82 temperature sensor 2 nSMI interrupt has two modes:

(1) Comparator Interrupt Mode

Setting the T_{HYST} (Temperature Hysteresis) limit to 127 øC will set temperature sensor 2 nSMI to the Comparator Interrupt Mode. Temperatures which exceed T_0 (Over Temperature) Limit cause an interrupt and this interrupt will be reset by reading the Interrupt Status Register. Once an interrupt event has occurred by exceeding T_0 , then reset, if the temperature remains above the T_0 , the interrupt will occur again when the next conversion has completed. If an interrupt event has occurred by exceeding T_O and not reset, the interrupts will not occur again. The interrupts will continue to occur in this manner until the temperature goes below T_O . (Figure 14A)

(2) Two-Times Interrupt Mode

Setting the T_{HYST} lower than T_O will set temperature sensor 2 nSMI to the Two-Times Interrupt Mode. Temperatures exceeding T_O causes an interrupt and then the temperature going below T_{HYST} will also cause an interrupt if the previous interrupt has been reset by reading the interrupt Status Register. Once an interrupt event has occurred by exceeding T_O , then reset, if the temperature remains above the T_{HYST} , the interrupt will not occur. (Figure 14B)

Temperature Sensor 1 Interrupt Mode

The MON35W82 temperature sensor 1 nSMI interrupt has three modes

(1) Comparator Interrupt Mode

Temperatures exceeding T_O cause an interrupt and this interrupt will be reset by reading the Interrupt Status Register. Once an interrupt event has occurred by exceeding T_O , then reset, if the temperature remains above the T_{HYST} , the interrupt will occur again when the next conversion has completed. If an interrupt event has occurred by exceeding T_O and not reset, the interrupts will not occur again. The interrupt continues to occur in this manner until the temperature goes below T_{HYST} . (Figure 15A)

(2) Two-Times Interrupt Mode

The temperature exceeding T_O causes an interrupt and then the temperature going below T_{HYST} will also cause an interrupt if the previous interrupt has been reset by reading the interrupt Status Register. Once an interrupt event has occurred by exceeding T_O , then reset, if the temperature remains above the T_{HYST} , the interrupt will not occur. (Figure 15B)

(3) One-Time Interrupt Mode

The temperature exceeding T_O causes an interrupt and then the temperature going below T_{HYST} will not cause an interrupt. Once an interrupt event has occurred by exceeding T_O , then going below T_{HYST} , an interrupt will not occur again until the temperature exceeds T_O . (Figure 15C)

Temperature sensor 1 Over-Temperature (nOVT) Modes

(1) Comparator Mode:

Setting Bank1 CR[52h] bit 2 to 0 will set nOVT signal to comparator mode. The temperature exceeding T_0 causes the nOVT output activated until the temperature is less than T_{HYST} . (Figure 16)

(2) Interrupt Mode:

Setting Bank1 CR[52h] bit 2 to 1 will set nOVT signal to interrupt mode. Setting Temperature exceeding T_0 causes the

nOVT output activated indefinitely until reset by reading temperature sensor 2 or sensor 3 registers. The temperature exceeding T_0 , then nOVT reset, and then temperature going below T_{HYST} will also cause the nOVT activated indefinitely until reset by reading temperature sensor 2 or sensor 3 registers. Once the nOVT is activated by exceeding T_0 , then reset, if the temperature remains above T_{HYST} , the nOVT will not be activated again.(Figure 16)

FIGURE 16 – OVER-TEMPERATURE RESPONSE DIAGRAM

Voltage and Fan nSMI mode

Voltage nSMI mode:

nSMI interrupt for voltage monitoring is Two-Times Interrupt Mode. Voltage exceeding the high limit or going below the low limit will cause an interrupt if the previous interrupt has been reset by reading the interrupt Status Register. (Figure 17)

Fan nSMI mode:

nSMI interrupt for fan monitoring is Two-Times Interrupt Mode. Fan count exceeding the limit, or exceeding and then going below the limit, will causes an interrupt if the previous interrupt has been reset by reading the interrupt Status Register. (Figure 17)

REGISTERS AND RAM

Configuration Register - Index 40h

Register Location: Power on Default Value Attribute: Size: 40h 00000001 binary Read/write 8 bits

- Bit 7: A one restores power on detault values to all registers except the Senal Bus Address register. This bit clears itself since the power on default is zero.
- Bit 6: A one drives a zero on BEEP/nGPO pin.
- Bit 5: Reserved
- Bit 4: Reserved
- Bit 3: A one disables the nSMI output without affecting the contents of the Interrupt Status Registers. The device will stop monitoring. It will resume monitoring when this bit is cleared.
- Bit 2: Reserved
- Bit 1: A one enables the nSMI Interrupt output.
- Bit 0: A one enables startup of monitoring operations, a zero puts the part in standby mode.
- **Note:** The outputs of Interrupt pins will not be cleared if the user writes a zero to this location after an interrupt has occurred unlike "INT_Clear" bit.

Interrupt Status Register 1 - Index 41h

Register Location: Power on Default Value Attribute: Size:

Bit 7: A one indicates the fan count limit of FAN2 has been exceeded.

41h

00h

Read Only

- Bit 6: A one indicates the fan count limit of FAN1 has been exceeded.
- Bit 5: A one indicates a High limit of VT1 has been exceeded from temperature sensor.
- Bit 4: A one indicates a High limit of VT2 has been exceeded from temperature sensor.
- Bit 3: A one indicates a High or Low limit of +5VIN has been exceeded.
- Bit 2: A one indicates a High or Low limit of +3.3VIN has been exceeded.
- Bit 1: Reserved.
- Bit 0: A one indicates a High or Low limit of VCORE has been exceeded.

Interrupt Status Register 2 - Index 42h

Register Location: Power on Default Va Attribute: Size:	lue			42h 00h Rea 8 bi	ad C ts	only			
	7	6	5	4	3	2	1	0	
									+12VIN -12VIN -5VIN FAN3 Reserved Reserved Reserved

- Bit 7-4: Reserved. This bit should be set to 0.
- Bit 3: A one indicates the fan count limit of FAN3 has been exceeded.
- Bit 2: A one indicates a High or Low limit of -5VIN has been exceeded.
- Bit 1: A one indicates a High or Low limit of -12VIN has been exceeded.
- Bit 0: A one indicates a High or Low limit of +12VIN has been exceeded.

nSMI Mask Register 1 - Index 43h Register Location: 43h Power on Default Value 00h Attribute: Read/Write Size: 8 bits 7 6 5 4 3 2 1 0 VCORE Reserved +3.3VIN +5VIN TEMP2 TEMP1 FAN1 FAN1

Bit 7-0: A one disables the corresponding interrupt status bit for nSMI interrupt.

nSMI Mask Register 2 - Index 44h Register Location: 44h

Register Location: Power on Default Value Attribute: Size:

Bit 7-4: Reserved. This bit should be set to 0.

Bit 3-0: A one disables the corresponding interrupt status bit for nSMI interrupt.

Reserved Register — Index 45h-- 46h

VID/Fan Divisor Register - Index 47h

Register Location: 47h Power on Default Value <7:4> is 0101, <3:0> is mapped to VID<3:0> Attribute: Read/Write Size: 8 bits 7 6 5 4 3 2 1 0 VID0 VID1 VID2 VID3 FAN1DIV_B0 FAN1DIV_B1 FAN2DIV_B0 FAN2DIV_B1

Bit 7-6: FAN2 Speed Control.

Bit 5-4: FAN1 Speed Control.

Bit 3-0: The VID <3:0> inputs

Note: Please refer to Bank0 CR[5Dh], Fan divisor table.

Serial Bus Address Register - Index 48h

Bit 7: Read Only - Reserved.

Bit 6-0: Read/Write - Serial Bus address <6:0>.

Value RAM — Index 20h- 3Fh or 60h - 7Fh

INDEX	DESCRIPTION
20h or 60h	VCORE reading
21h or 61h	Reserved
22h or 62h	+3.3VIN reading
23h or 63h	+5VIN reading
24h or 64h	+12VIN reading
25h or 65h	-12VIN reading
26h or 66h	-5VIN reading
27h or 67h	Temperature sensor 2 (VT2) reading
28h or 68h	FAN1 reading
	Note: This location stores the number of counts of the internal
	clock per revolution.
29h or 69h	FAN2 reading
	Note: This location stores the number of counts of the internal
	clock per revolution.
2Ah or 6Ah	FAN3 reading
	Note: This location stores the number of counts of the internal
	clock per revolution.
2Bh or 6Bh	VCORE High Limit, default value is defined by Vcore Voltage
	+0.2v.
2Ch or 6Ch	VCORE Low Limit, default value is defined by Vcore Voltage -
	0.2v.
2Dh or 6Dh	Reserved
2Eh or 6Eh	Reserved
2Fh or 6Fh	+3.3VIN High Limit
30h or 70h	+3.3VIN Low Limit
31h or 71h	+5VIN High Limit
32h or 72h	+5VIN Low Limit

Value RAM — Index 20h-	3Fh or 60h -	7Fh, continued
------------------------	--------------	----------------

ADDRESS A6-A0	DESCRIPTION
33h or 73h	+12VIN High Limit
34h or 74h	+12VIN Low Limit
35h or 75h	-12VIN High Limit
36h or 76h	-12VIN Low Limit
37h or 77h	-5VIN High Limit
38h or 78h	-5VIN Low Limit
39h or 79h	Temperature sensor 2 (VT2) High Limit
3Ah or 7Ah	Temperature sensor 2 (VT2) Hysteresis Limit
3Bh or 7Bh	FAN1 Fan Count Limit
	Note: It is the number of counts of the internal clock for the Low
	Limit of the fan speed.
3Ch or 7Ch	FAN2 Fan Count Limit
	Note: It is the number of counts of the internal clock for the Low
	Limit of the fan speed.
3Dh or 7Dh	FAN3 Fan Count Limit
	Note: It is the number of counts of the internal clock for the Low
	Limit of the fan speed.
3E- 3Fh or 7E-7Fh	Reserved

Setting all ones to the high limits for voltages and fans (0111 1111 binary for temperature) means interrupts will never be generated except the case when voltages go below the low limits.

Voltage ID (VID4) & Device ID - Index 49h

Register Location: Power on Default Value

Size:

<7:1> is 000,0001b

Bit 7-1: Read Only - Device ID<6:0> Bit 0: Read/Write - The VID4 inputs.

Temperature 2 and Temperature 3 Serial Bus Address Register--Index 4Ah

49h

Temperature 2 and Ter	npe	ratu	ire .	3 26	riai	Bus	s Ad	aress Register	index
Register Location:				4Ah					
Power on Default Value				<7:0)> =	000	0,00	01 binary. Rese	et by MR
Attribute:				Rea	d/W	rite			
Size:				8 bi	ts				
	7	~	_		~	~		0	

Bit 7-4: Reserved

- Bit 3: Set to 1, disable temperature Sensor 1 and can not access any data from Temperature Sensor 1.
- Bit 2-0: Temperature 2 Serial Bus Address. The serial bus address is 1001xxx. Where xxx are defined in these bits.

Pin Control Register - Index 4Bh

Register Location: Power on Default Value Attribute: Size: 4Bh <7:0> 44h. Reset by MR. Read/Write 8 bits

Bit 7-6:Fan3 speed divisor. Please refer to Bank0 CR[5Dh], Fan divisor table.

Bit 5-4: Select A/D Converter Clock Input. <5:4> = 00 - Default. ADC clock select 22.5 kHz <5:4> = 01- ADC clock select 5.6 kHz. (22.5K/4) <5:4> = 10 - ADC clock select 1.4kHz. (22.5K/16) <5:4> = 11 - ADC clock select 0.35 kHz. (22.5K/64)

Bit 3-2: Clock Input Select.

<3:2> = 00 - Pin 3 (CLKIN) select 14.318MHz clock. <3:2> = 01 - Default. Pin 3 (CLKIN) select 24MHz clock. <3:2> = 10 - Pin 3 (CLKIN) select 48MHz clock .

<3:2> = 11 - Reserved. Pin3 no clock input.

Bit 1-0: Reserved. User defined.

nIRQ/nOVT Property Select - Index 4Ch

Register Location: Power on Default Value Attribute: Size: 4Ch <7:0> --0000,0001. Reset by MR. Read/Write 8 bits

- Bit 7: Set to 1, select pin 9 nSMI/PWMOUT2 as PWM output. Set to 0, select pin 9 as nSMI output.
- Bit6: Set to 1, the nSMI output type of temperature sensor 1 is set to Comparator Interrupt mode. Set to 0, the nSMI output type is set to Interrupt mode (defined by CR[4Ch] Bit 5).
- Bit 5: Set to 1, the nSMI output type of temperature sensor 1 is set to One-Time interrupt mode. Set to 0, the nSMI output type of temperature sensor 1 is set to Two-Times interrupt mode.
- Bit 4 : Reserved. User Defined.
- Bit 3: Disable temperature sensor 1 over-temperature (OVT) output if set to 1. Default 0, enable OVT1 output through pin nOVT.
- Bit 2: Over-temperature polarity. Write 1, nOVT active high. Write 0, nOVT active low. Default 0.
- Bit 1-0: Reserved. User Defined.

FAN IN/OUT and BEEP/nGPO Control Register - Index 4Dh

Register Location: Power on Default Value Attribute: Size: 4Dh <7:0> 0001,0101. Reset by MR. Read/Write 8 bits

- Bit 7: Disable power-on abnormal voltage monitoring including V-Core A and +3.3V. If these voltages exceed the limit value, the BEEP pin (Open Drain) will drive a 300Hz or 600Hz frequency signal. Write 1, the frequency will be disable. Default 0. After power on, the system should set this bit to 1 in order to disable BEEP.
- Bit 6: BEEP/nGPO Pin Function Select. Write 1 Select nGPO function. Set 0, select BEEP function. This bit defaults to 0.
- Bit 5: FAN 3 output value if FANINC3 is set to 0. If this bit is a 1, then pin 4 always generates a logic high signal. If this bit is a 0, pin 4 always generates logic low signal. This bit defaults to 0.
- Bit 4: FAN 3 Input Control. Set to 1(default), pin 4 acts as FAN clock input. Set to 0, pin 4 acts as FAN control signal and the output value of FAN control is set by register bit 5. This output pin can connect to power PMOS gate to control FAN ON/OFF.
- Bit 3: FAN 2 output value if FANINC2 is set to 0. If this bit is 1, then pin 3 always generates a logic high signal. If 0 (default), pin 3 always generates a logic low signal.
- Bit 2: FAN 2 Input Control. Set to 1(default), pin 3 acts as FAN clock input. Set to 0, pin 3 acts as FAN control signal and the output value of FAN control is set by this register bit 3. This output pin can connect to power NMOS gate to control FAN ON/OFF.
- Bit 1: FAN 1 output value if FANINC1 is sets to 0. If 1, then pin 2 always generates a logic high signal. If 0(default), pin 2 always generates a logic low signal.
- Bit 0: FAN 1 Input Control. Set to 1(default), pin 2 acts as FAN clock input. Set to 0, pin 2 acts as FAN control signal and the output value of FAN control is set by register bit 1. This output pin can connect to power PMOS gate to control FAN ON/OFF.

Register 50h ~ 5Fh Bank Select - Index 4EhRegister Location:4EhPower on Default Value<6:3> = Reserved, <7> = 1, <2:0> = 0. Reset by MRAttribute:Read/WriteSize:8 bits76543210

- Bit 7: HBACS- High byte access. Set to 1(default), access Register 4Fh high byte register. Set to 0, access Register 4Fh low byte register.
- Bit 6-3: Reserved. This bit should be set to 0.
- Bit 2-0: Index ports 0x50~0x5F Bank select.

SMSC Vendor ID - Index 4Fh

Register Location: Power on Default Value Attribute: Size: 4Fh <15:0> = 5CA3h Read Only 16 bits

Bit 15-8: Vendor ID High Byte if CR4E.bit7=1. Default 5Ch. Bit 7-0: Vendor ID Low Byte if CR4E.bit7=0. Default A3h.

SMSC Test Register -- Index 50h - 55h (Bank 0)

BEEP Control Register 1-- Index 56h (Bank 0)

Register Location: Power on Default Value Attribute: Size: 56h <7:0> 0000,0000. Reset by MR. Read/Write 8 bits

- Bit 7: Enable BEEP Output from FAN 2 if the monitor value exceeds the limit value. If set to 1(default) enable BEEP output.
- Bit 6: Enable BEEP Output from FAN 1 if the monitor value exceeds the limit value. If set to 1(default), enable BEEP output.
- Bit 5: Enable BEEP Output from Temperature Sensor 1 if the monitor value exceeds the limit value. If set to 1, enable BEEP output. Default is 0.
- Bit 4: Enable BEEP output for Temperature Sensor 2 if the monitor value exceed the limit value. If set to 1, enable BEEP output. Default is 0
- Bit 3: Enable BEEP output from VDD (+5V), If set to 1, enable BEEP output if the monitor value exceeds the limits value. Default is 0, disable BEEP output.
- Bit 2: Enable BEEP output from +3.3V. If set to 1(default), enable BEEP output.
- Bit 1: Reserved.
- Bit 0: Enable BEEP Output from VCORE if the monitor value exceeds the limits value. If set to 1(default), enable BEEP output.

BEEP Control Register 2-- Index 57h (Bank 0)

Register Location: Power on Default Value Attribute: Size: 57h <7:0> 1000-0000. Reset by MR. Read/Write 8 bits

- Bit 7: Enable Global BEEP. If set to 1, enable global BEEP output. Default 1. If set to 0, disable all BEEP outputs.
- Bit 6-4: Reserved.
- Bit 3: Enable BEEP Output from FAN 3 if the monitor value exceeds the limit value. If set to 1, enable BEEP output. Default 0.
- Bit 2: Enable BEEP output from -5V, If set to 1, enable BEEP output if the monitor value exceeds the limits value. Default 0, disable BEEP output.
- Bit 1: Enable BEEP output from -12V, If set to 1, enable BEEP output if the monitor value exceeds the limits value. Default 0, disable BEEP output.
- Bit 0: Enable BEEP output from +12V, If set to 1, enable BEEP output if the monitor value exceed the limits value. Default 0, disable BEEP output.

Chip ID -- Index 58h (Bank 0) Register Location: 58h Power on Default Value <7:0> 0100-0000. Reset by MR. Attribute: Read Only Size: 8 bits 7 6 5 4 3 2 0 1 CHIPID

Bit 7: SMSC Chip ID number. Read this register will return 40h.

Reserved Register -- Index 59h (Bank 0)

PWMOUT1 Control Register -- Index 5Ah (Bank 0)

Register Location: Power on default value: Attribute: Size: 5Ah <7:0> 1111-1111. Reset by MR. Read/Write 8 bits

Bit 7: PWMOUT1 duty cycle control

If "FF", Duty cycle is 100%, If "00", Duty cycle is 0%.

Bit 7: PWMOUT2 duty cycle control IF "FF", Duty cycle is 100%, IF "00", Duty cycle is 0%.

PWMOUT1/2 Clock Select Register -- Index 5Ch (Bank 0)

Register Location: Power on Default Value Attribute: Size: 5Ch <7:0> 0001-0001. Reset by MR. Read/Write 8 bits

Bit 7: Reserved

Bit 6-4: PWMOUT1 clock selection.

The clock-defined frequency is same as PWMOUT2 clock selection.

Bit 3: Set to 1. Enable PWMOUT1 PWM Control Bit 2-0: PWMOUT2 clock Selection. <2:0> = 000: 46.87kHz <2:0> = 001: 23.43kHz (Default) <2:0> = 010: 11.72kHz <2:0> = 011: 5.85kHz <2:0> = 100: 2.93kHz

Fan Divisor Control Register -- Index 5Dh (Bank 0)

Register Location: Power on Default Value Attribute: Size: 5Dh <7:0> 0000-0000. Reset by MR. Read/Write 8 bits

- Bit 7: Fan3 divisor Bit 2.
- Bit 6: Fan2 divisor Bit 2.
- Bit 5: Fan1 divisor Bit 2.
- Bit 4-0: Reserved

FAN DIVISOR TABLE

BIT 2	BIT 1	BIT 0	FAN DIVISOR	BIT 2	BIT 1	BIT 0	FAN DIVISOR
0	0	0	1	1	0	0	16
0	0	1	2	1	0	1	32
0	1	0	4	1	1	0	64
0	1	1	8	1	1	1	128

Reserved Register -- Index 5Eh (Bank 0)

Reserved Register -- Index 5Fh (Bank 0)

Temperature Sensor 1 Temperature (High Byte) Register - Index 00h

Bit 7-0: Temperature <8:1> of sensor 2, Bit 7 is MSB.

Temperature Sensor 1 Temperature (Low Byte) Register - Index 00h

Bit 7: Temperature <0> of sensor2, LSB.

Bit 6-0: Reserved. This bit should be set to 0.

Temperature Sensor 1 Configuration Register - Index 01h

Register Location: Power on Default Value Size: 01h <7:0> = 0x00 8 bits

- Bit 7-5: Read Reserved. This bit should be set to 0.
- Bit 4-3: Read/Write Number of faults to detect before setting nOVT output to avoid false tripping due to noise.
- Bit 2: Read Reserved. This bit should be set to 0.
- Bit 1: Read/Write nOVT Interrupt mode select. If set to 0(default), compared mode. If set to 1, interrupt mode will be selected.
- Bit 0: Read/Write When set to 1 the sensor will stop monitoring.

Bit 7-0: Temperature hysteresis bit 8-1, Bit 7 is MSB. The temperature default is 75 degree C.

Temperature Sensor 1 Hysteresis (Low Byte) Register - Index 02h

Bit 7: Temperature hysteresis bit 0, LSB.

Bit 6-0: Reserved. This bit should be set to 0.

Temperature Sensor 1 Over-temperature (High Byte) Register - Index 03h Register Location: 03h Power on Default Value <7:0> = 0x50 Attribute: Read/Write Size: 8 bits 7 5 4 3 2 6 1 0 TOVF2<8:1>

Bit 7-0: Over-temperature bit 8-1, Bit 7 is MSB. The temperature default 80 degree C.

Temperature Sensor 1 Over-temperature (Low Byte) Register - Index 03h

Bit 7: Read/Write - Over-temperature bit 0, LSB. Bit 6-0: Read Only - Reserved. This bit should be set to 0.

Reserved Register -- Index 50h--52h (BANK4)

BEEP Control Register 3 -- Index 53h (Bank 4)

Bit 7-6: Reserved.

Bit 5: User define BEEP output function. If set to 1, the BEEP is always active. If set to 0, this function is inactive. (Default 0)

Bit 4-0: Reserved.

Reserved Register -- Index 54h--58h (Bank 4)

Real Time Hardware Status Register I -- Index 59h (Bank 4) Register Location: 59h

	Juni		° g. o			aon		(Dun	IN 7)
Register Location:			!	59h					
Power on Default Value	<7:0>	> 00	0,00	000.	Rese	et by MR.			
Attribute:			I	Read	On	ly ́			,
Size: 8 bits									
	7	6	5	4	3	2	1	0	
									- VCORE_STS - Reserved - +3.3VIN_STS - +5VIN_STS - TEMP2_STS - TEMP1_STS - TEMP1_STS - FAN1_STS - FAN2_STS

- Bit 7: FAN 2 Status. If 1, the fan speed counter is over the limit value. If 0, the fan speed counter is in the limit range.
- Bit 6: FAN 1 Status. If 1, the fan speed counter is over the limit value. If 0, the fan speed counter is in the limit range.
- Bit 5: Temperature sensor 1 Status. If 1, the voltage of temperature sensor is over the limit value. If 0, the voltage of temperature sensor is in the limit range.
- Bit 4: Temperature sensor 2 Status. If 1, the voltage of temperature sensor is over the limit value. If 0, the voltage of temperature sensor is in the limit range.
- Bit 3: +5V Voltage Status. If 1, the voltage of +5V is over the limit value. If 0, the voltage of +5V is in the limit range.
- Bit 2: +3.3V Voltage Status. If 1, the voltage of +3.3V is over the limit value. If 0, the voltage of +3.3V is in the limit range.
- Bit 1: Reserved.
- Bit 0: VCORE Voltage Status. If 1, the voltage of VCORE is over the limit value. If 0, the voltage of VCORE is in the limit range.

Real Time Hardware Status Register II -- Index 5Ah (Bank 4)

Register Location: Power on Default Value Attribute: Size:	ie <7:0> 0000,0000. Reset by MR. Read Only 8 bits												
	7	6	5	4		3	2	1		0			
[_				
												+12VIN -12VIN -5VIN FAN3 Reserve Reserve Reserve Reserve	_STS STS STS STS ad ad ad ad

- Bit 7-4: Reserved
- Bit 3: FAN3 Voltage Status. If 1, the fan speed counter is over the limit value. If 0, the fan speed counter is during the limit range.
- Bit 2: -5V Voltage Status. If 1, the voltage of -5V is over the limit value. If 0, the voltage of -5V is during the limit range.
- Bit 1: -12V Voltage Status. If 1, the voltage of -12V is over the limit value. If 0, the voltage of -12V is during the limit range.
- Bit 0: +12V Voltage Status. If 1, the voltage of +12V is over the limit value. If 0, the voltage of +12V is in the limit range.

SPECIFICATIONS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Power Supply Voltage	-0.5 to 7.0	V
Input Voltage	-0.5 to VDD+0.5	V
Operating Temperature	0 to +70	° C
Storage Temperature	-55 to +150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC Characteristics

 $(Ta = 0^{\circ} C \text{ to } 70^{\circ} C, VDD = 5V \pm 10\%, VSS = 0V)$

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS				
I/O _{12t} - TTL level bi-directional pin with source-sink capability of 12 mA										
Input Low Voltage	VIL			0.8	V					
Input High Voltage	VIH	2.0			V					
Output Low Voltage	VOL			0.4	V	IOL = 12 mA				
Output High Voltage	VOH	2.4			V	IOH = - 12 mA				
Input High Leakage	ILIH			+10	μA	VIN = VDD				
Input Low Leakage	ILIL			-10	μA	VIN = 0V				
I/O _{12ts} - TTL level bi-directional pin with source-sink capability of 12 mA and schmitt-										
trigger level input										
Input Low Threshold Voltage	Vt-	0.5	0.8	1.1	V	VDD = 5 V				
Input High Threshold Voltage	Vt+	1.6	2.0	2.4	V	VDD = 5 V				
Hysteresis	VTH	0.5	1.2		V	VDD = 5 V				
Output Low Voltage	VOL			0.4	V	IOL = 12 mA				
Output High Voltage	VOH	2.4			V	IOH = - 12 mA				
Input High Leakage	ILIH			+10	μA	VIN = VDD				
Input Low Leakage	ILIL			-10	μA	VIN = 0V				
OUT _{12t} - TTL level outpu	it pin wit	h source	-sink cap	ability o	f 12 mA	·				
Output Low Voltage	VOL			0.4	V	IOL = 12 mA				
Output High Voltage	VOH	2.4			V	IOH = -12 mA				
OD ₈ - Open-drain outpu	t pin wit	h sink ca _l	oability o	of 8 mA						
Output Low Voltage	VOL			0.4	V	IOL = 8 mA				
OD ₁₂ - Open-drain outp	ut pin wi	th sink ca	pability	of 12 mA	1					
Output Low Voltage	VOL			0.4	V	IOL = 12 mA				
OD ₄₈ - Open-drain output pin with sink capability of 48 mA										
Output Low Voltage	VOL			0.4	V	IOL = 48 mA				
INt - TTL level input pin		-				-				
Input Low Voltage	VIL			0.8	V					
Input High Voltage	VIH	2.0			V					
Input High Leakage	ILIH			+10	μA	VIN = VDD				

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS				
Input Low Leakage	ILIL			-10	μA	VIN = 0 V				
IN _{ts} - TTL level Schmitt-triggered input pin										
Input Low Threshold Voltage	Vt-	0.5	0.8	1.1	V	VDD = 5 V				
Input High Threshold Voltage	Vt+	1.6	2.0	2.4	V	VDD = 5 V				
Hysteresis	VTH	0.5	1.2		V	VDD = 5 V				
Input High Leakage	ILIH			+10	μA	VIN = VDD				
Input Low Leakage	ILIL			-10	μA	VIN = 0 V				

AC CHARACTERISTICS

Serial Bus Timing Diagram

Serial Bus Timing

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
SCL clock period	t ⁻ SCL	10		uS
Start condition hold time	t _{HD;SDA}	4.7		uS
Stop condition setup-up time	t _{SU;STO}	4.7		uS
DATA to SCL setup time	t _{su;dat}	120		nS
DATA to SCL hold time	t _{HD;DAT}	5		nS
SCL and SDA rise time	t _R		1.0	uS
SCL and SDA fall time	t _F		300	nS

PACKAGE DIMENSIONS

(24 Pin SOP)

© 1999 STANDARD MICROSYSTEMS CORPORATION (SMSC)

Circuit diagrams utilizing SMSC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any licenses under the patent rights of SMSC or others. SMSC reserves the right to make changes at any time in order to improve design and supply the best product possible. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer.

MON35W82 Rev. 1/12/1999