
Summary This Application Note discusses system and FPGA design techniques for applications that 
operate in space or in other environments exposed to heavy ion or charged particle radiation. 
Single Event Upset (SEU) detection, correction, and mitigation for the XQR4000XL are 
demonstrated.

Overview FPGA design for use in a radiation environment presents new challenges to the traditional 
digital designer. Often people associate radiation tolerance with the so-called "hardness" of the 
part. "Hardness" is simply a measure of the total dose of radiation to which an IC can be 
subjected before critical parameter(s) cross a predefined threshold. An IC is therefore said to 
be "rad tolerant" to a given total dosage, at which point some critical parameter goes out of 
specification. 

Supply Current (ICC) and Radiation Dosage
For many technologies, the supply current of a device (ICC) is a critical parameter for 
determining useful life for a device when subjected to ionizing radiation.  In some technologies, 
the gate control voltage at the onset of conduction (the threshold voltage) decreases (or 
increases) when subjected to radiation.  If this threshold voltage gets too low, the integrated 
circuit can experience an increase on ICC caused by leakage across an "off" transistor.  Another 
cause of an increase in ICC with ionizing radiation is a decrease in the field threshold (the field 
oxide parasitic transistor in parallel with every active transistor).  If the field threshold 
decreases, the integrated circuit can also experience an increase in ICC.  While both of these 
phenomena limit the useful radiation exposure a device can withstand, they present different 
aspects to the circuit designer.

A decrease in the threshold voltage will also manifest itself in an increase in the frequency 
capability of the integrated circuit and an increase in ICC, while a decrease in the field voltage 
will result only in an increase of ICC.  It is this latter effect that has dominates the useful ionizing 
radiation performance of the XQR4000XL.  A plot of ICC versus total dose for the XQR4000XL 
is shown in Figure 1.
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SEU Mitigation Design Techniques for the XQR4000XL R
Xilinx defines the dose limit of their XCR4000XL FPGAs as the point where ICC has increased 
to twice the commercial ICC specification, with all AC parameters remaining within 
specification. The commercial ICC specification is a very conservative value, so twice this 
number still falls within absolute operating limits. The 0.35µ XC4000XL radiation-tolerant 
FPGAs are rated as 60 KRad parts.

If the application requires a higher total dosage rating than that specified, shielding may be 
employed to keep the effective dosage of the FPGA below the maximum specification. 

Single-Event Upset (SEU) Logic Errors
In addition to the Total Dose, Single Event Effects (SEE) must be considered. As an IC is 
bombarded with radiation particles, a temporary logic state change can occur within the IC. 
This phenomenon is known as a Single Event Upset (SEU). This effect can manifest as a 
transient upset which can last a few nanoseconds, or as a static upset which changes the 
stored charge of a static cell. For simple gates, a transient glitch in the logic is usually not an 
issue. When an SEU occurs within the latch that makes up a flip-flop or memory cell, however 
— a static upset — the effects on functionality are often problematical. Since a flip-flop is a 
memory device, the flip-flop can change state and remain in that state until the next occurring 
clock or reset. In this condition the flip-flop is said to have been "upset" (i.e., its state has 
changed independently of circuit operation). Likewise, the configuration latches, which define 
the user’s design functionality, can be also susceptible to static upsets.

Before methods to mitigate the risks and effects of an SEU are discussed, it is important to note 
that the functional effect(s) of an SEU are application specific. For example, if an FPGA is being 
used as a digital filter and an upset causes the filter to miscalculate, the result is "bad" data for 
a few clock cycles. This is typically a non-mission-critical function, and as long as the error can 
be detected and corrected, then it may be fully acceptable. However, a mission-critical function 
obviously cannot tolerate a functional upset. This application note will demonstrate ways to 
remove risk from functional upsets. Determining the risks and effects of an SEU in your system 
should be the first step in deciding upon an SEU mitigation approach.

A conventional design mitigation technique for standard logic is the "majority vote" circuit. The 
functionality of a single flip-flop is implemented by three flip-flops in parallel. These flip-flops 

Figure 1:  ICC (mA) vs. Total Dose (KRads)
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SEU Mitigation Design Techniques for the XQR4000XL R
feed a gating circuit the output of which reflects the state of the majority of the flip-flops. A 
typical majority vote circuit is shown in Figure 2. 

Inherent in this technique is the assumption that only one SEU occurs within a given time 
period (i.e., the time it takes for the next clock edge to occur and load the flip-flops with new 
data). Obviously, if two of the flip-flops suffer contemporaneous upsets, then the majority vote 
circuit will give the state of the two incorrectly set flip-flops. The chance of this occurring, 
though, is usually considered statistically negligible, calculated by squaring the "normal" SEU 
rate (e.g., [10-5 bit-upsets/day]2 = 10-10 uncorrected bit-upsets/day). 

It is important to acknowledge that FPGA designs for space always come down to a determined 
acceptable amount of risk. Decreasing risk means increasing design complexity. The cost of 
the standard majority mitigation technique is obvious: the use of three times as many flip-flops. 
But with the abundance of resources available in Xilinx’s line of rad-tolerant FPGAs, this cost 
would be tolerable in most cases. 

However, there are many more latches in a Xilinx FPGA than those actually design-specified by 
the user as flip-flops; the majority of latches are in fact used for configuration memory. Because 
the configuration memory cells are just as susceptible to SEUs as are the design-specified flip-
flops, the standard majority mitigation technique alone is not adequate to overcome the effects 
of SEUs in FPGAs.

Reconfigurability One of the very notable features of Xilinx FPGAs is that they are reconfigurable, as opposed to 
one-time programmable. If a design change is necessary, then a new configuration can be 
loaded and the functionality of the FPGA altered without having to remove and discard the IC, 
as is the case with anti-fuse FPGAs. This also allows upgrades to be made in the field, or even 
in space. Unfortunately, this increased flexibility results in a more involved design solution for 
SEU effects. An understanding of how a Xilinx FPGAs configuration works is necessary before 
we can discuss the next level of SEU design mitigation techniques.

FPGA "First Floor and Basement" Architecture
Before power-up, a Xilinx FPGA is completely unconfigured. In other words, thousands of flip-
flops and logic gates are residing in the IC, connected neither to one another nor to the I/O pins. 
As the power supply voltage rises and crosses a certain threshold, the FPGA begins to load its 
"brains" (configuration) and all I/O pins are set in a tri-state condition. The internal configuration 
clock becomes active and begins to clock data from the configuration data storage into the 
configuration latches. Buried in this configuration data stream are the items that make up a 
configured FPGA: logic function, I/O pin definition, clock distribution, flip-flops, routing, and so 
on. Once the configuration data is loaded and the CRC checksum is verified, the FPGA 
becomes active and the I/O pins begin to function as specified by the design. 

Figure 2:  Majority Vote Circuit
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SEU Mitigation Design Techniques for the XQR4000XL R
Using a "house" analogy, if all the functions that the FPGA is to perform (logic, flip-flops, pins, 
etc.) are considered to be on the "first floor", then all the configuration latches are in the 
"basement". See Figure 3.

As it turns out, the basement is necessarily much larger than the first floor. It takes 
approximately 30 configuration latches to configure each user-CLB, with each configuration 
latch controlling some specific property of the CLB or I/O block. The logic implemented in the 
look-up tables (LUTs) is one of the more important properties held in these latches. If a latch 
that configures an LUT experiences an upset, then the logic intended in the design may be 
altered. For example, it could be possible for a design-specified AND gate to become a NAND 
gate instead.

It should now become apparent that the majority vote circuit shown in Figure 2 is not reliable as 
an SEU mitigation technique, because the majority vote portion of the circuit can change its 
function in the event of an SEU occurring on a latch that controls the circuit. Therefore, some 
new methods of SEU mitigation are required.

Design 
Mitigation 
Techniques

FPGA designs are completed with varying degrees of risk based on the mitigation techniques 
employed. Since the amount of "acceptable risk" varies with the application, the design 
mitigation strategy employed will also vary. In some cases, it may be acceptable to do very little 
to accommodate SEUs; in other cases, the techniques may need to be rather sophisticated. 
The remainder of this Application Note will focus on various techniques for SEU mitigation. 
These techniques are listed in ascending complexity: auto-reconfiguration; using logic 
redundancy and an XOR gate for SEU detection; using the Xilinx "Readback" capability for 
SEU detection; using wired-AND outputs in conjunction with readback; and finally, building an 
SEU-safe system by combining these techniques.

Auto-Reconfiguration
The simplest approach to SEU mitigation is to reconfigure the FPGA upon detecting a system 
failure or at specified time intervals. For example, suppose an FPGA used to control a 
spacecraft heater experiences an SEU, causing the FPGA to improperly turn on the heater. If 
it can be determined through other spacecraft systems that the heater has been turned on, a 
command could be sent to restore the heater to its proper state and/or reconfigure the FPGA. 

Figure 3:  FPGA Configuration Hierarchy
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While this strategy may create an annoyance for the system, it might be seen as an acceptable 
approach in non-mission-critical applications where economy of design is paramount. If an 
application is of a more critical nature, however, then it may be imperative that the occurrence 
of an SEU be detected and specifically addressed.

XOR Gate for SEU Detection
One method for accomplishing this, shown in Figure 4, consists of adding a duplicate logic 
circuit to critical FPGA functions. One output drives whatever function the logic was designed to 
perform, while the output of the redundant circuit is used in conjunction with the primary output 
to drive the inputs of an XOR gate. If an SEU occurs which affects either circuit, the outputs of 
the logic will conflict and the XOR gate will output a "1" indicating that an SEU has occurred. 

If there are several places where this method needs to be employed, the XOR outputs can all 
be ORed together to provide a single SEU status bit. This SEU status bit can also be used to 
drive the GTS (Global Tri-State) pin of the STARTUP component, causing all outputs to a high-
impedance state in the event of an SEU occurrence.

Xilinx "Readback" Capability
Every Xilinx FPGA family incorporates a feature called Readback. Originally designed to 
facilitate testing during production of the ICs, it provides a non-intrusive method of reading the 
current state of every flip-flop and configuration memory cell within the FPGA. To make use of 
this feature, the "Readback" component needs to be instantiated in the design. 

This function runs in the background, and in no way affects the performance of the FPGA. The 
design can run at full speed while simultaneously performing a readback. (See Xilinx 
Application Note XAPP015 "Using the XC4000 Readback Capability").

A CRC checksum based upon all the bits that have just been read back is generated and 
inserted at the end of the readback serial stream. This CRC checksum can be compared to the 
expected checksum for the current configuration; if it does not compare, then an SEU may 
have occurred. 

During Readback, every bit that currently resides in each flip-flop along with every configuration 
bit is serially shifted out of the readback block. The output of the readback block can drive either 
an external pin or an internal signal. Readback of the XQR4000XL must be clocked out at a 
frequency between 1 MHz and 2 MHz. (Virtex™ is two orders of magnitude faster). The 
amount of time required to read back the FPGA varies on the size of the FPGA. For example, 
the XC4062XL contains 1,433,812 configuration bits. At a 1.5 MHz rate, it would take 960 ms 
to read back this FPGA.

There are three different ways to incorporate readback in a design. These are: 

• Use a microcontroller or microprocessor to verify the checksum 

• Use separate FPGAs to monitor one another 

• Self-readback 

Figure 4:  SEU Detection by Redundancy and XOR Gating
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Each method will be discussed in detail below.

NOTE: If SelectRAM is to be used in the design, then a simple CRC check of the readback 
data will not work. This is because SelectRAM actually employs the configuration bits as 
storage elements. Therefore, if a RAM value has been changed, the configuration 
readback checksum will differ from the default value checksum. When incorporating 
SelectRAM in the design, therefore, readback should be used to perform a full bit-for-bit 
verification of the readback data (see Application Note XAPP015).

Microcontroller for Readback

The block diagram shown in Figure 5 illustrates a readback CRC compare function easily 
implemented using a microcontroller. The microcontroller simply extracts the checksum from 
the readback serial stream and then compares it to the expected value. The output of the 
circuit, SEU_EVENT, can be used to interrupt to the system’s processor signaling the 
occurrence of an SEU. At the next "convenient" time, the FPGA should be commanded to 
reconfigure.

Figure 5:  Readback CRCComparator
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The CRC data is located in the last 11 bits of the readback stream. XAPP015 explains in 
greater detail the anatomy of the readback data; however, Table 1 summarizes the CRC 
locations for the XQR4000XL parts. The beginning of the readback stream is identified by a 
preamble consisting of five dummy "1s" followed by a "0". The amount of data between the 
preamble and the 11-bit CRC is device-dependent, as shown in Table 1.

Using Separate FPGAs to Monitor One Another

If a design requires more than one FPGA, or multiple FPGAs are used as redundancy, then 
each FPGA can be used to monitor the readback serial stream of a neighboring FPGA. The 
CRC comparator shown in Figure 5 can easily be implemented in an FPGA. If an SEU is 
detected, one of two possibilities has occurred: Either the FPGA being monitored experienced 
an SEU, or the detection circuit in the monitoring FPGA itself experienced an SEU. The 
SEU_EVENT signal is used to alert the system that both FPGAs need to be reconfigured at the 
next opportunity.

Self-readback

Instead of having two or more FPGAs monitor one another’s readback CRC, it is possible to 
use a single FPGA to monitor itself. Design redundancy is required, however, because an SEU 
can occur in the readback monitor circuit itself, thereby rendering its result invalid. A simple 
redundancy method involves creating two readback compare circuits in parallel and wire-
ANDing the outputs. Simultaneous occurrence of CRC errors in both comparators would 
indicate an SEU in the configuration logic under test, rather than in one of the readback 
compare circuits. A block diagram of this technique is shown in Figure 6.

Wire-ANDed Outputs
Up to this point, we have focused on methods of detecting when a logic error caused by an 
SEU has already occurred. Some signals, however, are sufficiently mission-critical that an 
erroneous logic state on an output cannot be tolerated for any period of time. The technique of 
wire-ANDing redundant logic outputs can be employed to mitigate the effects of SEUs at this 
level of criticalness.

For example, suppose that the FPGA is being used to drive a pyrotechnic device that jettisons 
part of a spacecraft. In this example, it would be unacceptable for the signal output to remain 

Table  1:  Readback Datastream Size

Device Preamble Data Stream CRC (12 bits)

XQR4013XL 111110 <399,630 bits> 0<11 bits>

XQR4036XL 111110 <841,350 bits> 0<11 bits>

XQR4062XL 111110 <1,445,502 bits> 0<11 bits>

Figure 6:  Redundant CRC Comparator
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erroneous for the time required to complete a readback, detect that an SEU has occurred, and 
remediate the condition. Wire ANDing using redundant design logic only drives a mission-
critical output to the active state when the two legs of redundant logic agree. 

It is important to understand that this mitigation method does not ensure that a desired signal 
will be correctly asserted in spite of an SEU which occurs during the assertion function. It does, 
however, ensure that a signal will not be erroneously asserted due to an SEU. 

The technique is shown in Figure 7.

To drive an output High, both the primary and duplicate logic chains must direct their respective 
output buffers to a high-impedance condition. In this state, both logic outputs are high-
impedance (looking back into the output pins), and the external pull-up resistor will pull the 
output signal High. If the logic chains do not agree, however, one or the other of the output 
buffers will be enabled, driving the wire-ANDed buffer output signal Low.

This technique is reliable for especially critical control signals, where one output state (logic 
High) is, by design, more meaningful than the other (logic Low). However, this approach is 
inappropriate for general data processing applications, where the output logic states are of 
equal importance and correct data propagation must be ensured.

Using the DONE signal to Control I/O Pins During Configuration

A precaution must be taken to ensure that the output of an unconfigured part is not interpreted 
as a true logic High. Since the FPGAs I/Os are in a high-impedance state before and during 
configuration, some other signal must hold the outputs Low during this time. The FPGAs DONE 
signal can be conveniently used to do this, since it drives Low during configuration. Since 
DONE will need to transition to High after configuration, an open-drain buffer should be placed 
between it and the outputs to be protected. (If many outputs are to be controlled in this fashion, 
additional buffers or relays may be added for each output pair.)

WARNING: It is imperative that the bit-stream generation (BitGen) software start-up options 
specify that the I/Os are released before the DONE. Note that this is NOT the default! 

Reliable System 
Design

To be considered reliable, a system must process and propagate data correctly even in the 
event of an upset to the configuration and/or user logic. To build a reliable FPGA system, 
therefore, we must combine the techniques of SEU detection, correction and mitigation.

Whichever method of SEU detection is chosen (full verification or CRC checking), adequate 
SEU correction requires reconfiguring the FPGA, as the configuration logic and memory 
cannot be ruled out as being a possible cause of the error detected. The XQR4000XL, 
therefore, does constrain the designer in one significant respect: a temporary disruption in 
service must be tolerated when correcting detected upsets. Designers of systems that cannot 

Figure 7:  Wire-ANDing Critical Outputs
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tolerate such a disruption should consider using the Virtex FPGA, which can be partially 
reconfigured without interruption.

Therefore, while an upset is present and being addressed, the logical functionality of the user 
design must be validated in some way so that incorrect data is not propagated through the 
system. The classical method for accomplishing this is Triple-Module Redundancy (TMR): that 
is, three identical FPGAs processing the same data in tandem, with the outputs mediated by an 
external voting circuit (Figure 2 on page 3).

TMR carries the further advantage that the entire FPGA may be used for the basic design, with 
no internal SEU mitigation techniques applied. However, since three duplicate FPGAs are 
required, it also carries the disadvantage of consuming significantly more board space and 
power. Where full TMR is deemed unsuitable by design economics or other considerations, the 
number of redundant FPGAs can be reduced from three to two by combining variations of the 
previously discussed techniques, provided the basic design (including duplicated logic) can be 
implemented within one FPGA.

Dual-voting 
Device 
Redundancy

A dual-voting system incorporates in just two FPGAs a fully redundant, self-mitigating system 
with built-in SEU detection and correction. The system, shown in Figure 8, is comprised of two 
FPGAs and a storage PROM.
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The basic logic design is duplicated in each FPGA. The two FPGAs configure sequentially and 
then resynchronize. Corresponding output pairs are XORed, and then all XOR outputs are 
ORed together to drive the (GTS) pin of the STARTUP component.

If the occurrence of an SEU affects the function of the user logic, the compare circuitry will 
assert the GTS signal for that device. Asserting GTS causes all the I/O pins of the affected 
FPGA to a high-impedance state; however, the unaffected FPGA will continue to drive the 
correct data. If the SEU is merely transient (i.e., no configuration cells are upset), GTS will 
release when the redundant logic modules are resynchronized. (For complex designs an 
additional security measure may be added to time-out when one device has been off-line too 
long and issue a soft reset to both FPGAs to resynchronize the system).

To protect against the effects of an SEU occurring within the configuration memory cells, each 
FPGA should perform a constant readback on the other. When one FPGA detects that the 
other has been upset, it will force the upset FPGA to reconfigure. When the upset FPGA is 
reinitialized and resumes operation, it should notice that the other FPGA is already running, 
and should assert a soft reset (GSR) to both FPGAs to resynchronize the system. (The soft 
reset causes an unfortunate disruption of the system, but the interruption is less severe than it 
would be with less sophisticated SEU mitigation, as the system will still function while an upset 
FPGA is being reconfigured.) 

Figure 8:  Dual Redundant Self-mitigating FPGA Design
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The following sections describe the different aspects of this system in greater detail.

Power-on Configuration
Both FPGAs (top and bottom) shown in Figure 8 should be set for Master Serial Mode 
configuration (all mode pins tied Low M[2:0]<000>). The power-on configuration process 
executes according to the following steps:

1. Upon power-up, both FPGAs will drive their INIT pins Low until they are ready for 
configuration. Since they are in Master Mode, they will release their INIT pins and 
commence clocking the configuration data out of the serial PROM once their INIT pins have 
externally transitioned High. (This process can be delayed by holding INIT Low externally.)

2. The top FPGA will commence configuration first. The DONE pin of each FPGA is driven 
Low by each device until configuration is complete. Since the DONE pin of the top FPGA is 
connected to the INIT pin of the bottom FPGA, the bottom FPGA cannot commence 
configuration until the top FPGA has released its DONE pin upon completion of its own 
configuration.

3. When the top FPGA has completed configuration and has released its DONE pin, the 
bottom FPGA will attempt to commence configuration. However, in order for the bottom 
FPGA to successfully configure, both the PROM and the bottom FPGA must be reset by 
pulsing Low OE/RESET and PROG, respectively. This is accomplished with the IO_1 pin, 
which is controlled by user-defined logic and is described in "Auto-Reconfiguration" on 
page 4.

NOTE: The IO_1 pin is a user-defined pin that may, if the user so chooses, co-exist on the 
same pin as INIT, a dual-function pin that becomes a user-programmable I/O (IOB) after 
configuration is complete. The IO_2 pin is also a user-defined I/O; it must be on a standard 
programmable I/O pin.

4. Upon configuration and activation, the top FPGA should sense that the DONE of the 
bottom device is Low on its IO_2 input, and subsequently pulse its IO_1 output Low for at 
least 300 ns. This will reset the serial PROM and force the bottom FPGA into 
reconfiguration

5. Upon completion of the bottom FPGAs configuration, the top FPGA’s DONE should be 
observed High on the IO_2 input, and normal system operation will begin.

Top Level Design
As shown in Figure 8, the top level design consists of the user’s basic design (logic); a duplicate 
of the basic design (duplicate logic); The STARTUP component (primitive); a constant Low 
output; a falling edge detector, and other random logic as shown; and a state machine to control 
the readback and auto-reconfiguration of the neighboring FPGA.

SEU Correction and Reconfiguration
The user must provide a small circuit within the top level design that will force the neighboring 
FPGA to reconfigure upon certain conditions. Those conditions should be:

1. The DONE of the neighboring FPGA is observed to be Low (IO_2). 

2. A readback of the neighboring FPGA indicates that an upset in the configuration memory is 
present.

3. (Optional, not illustrated) The neighboring FPGA has held its outputs in a high-impedance 
state too long.

Condition 1 indicates a failed configuration or "deconfiguration", as well as controlling the 
Power-on Configuration sequence. 

Condition 2 provides SEU correction when an SEU has been detected by readback.
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Condition 3 is not illustrated in Figure 8. The basic concept is for each FPGA to be cognizant 
of the operational status of its neighbor FPGA. If the neighbor FPGA tri-states its pins because 
of a functional interrupt or effect other than an SEU to the configuration memory, but does not 
seem to recover on its own, then the system should be reset before such time has elapsed that 
would put the system in danger of both FPGAs being upset simultaneously. See "Optional 
Watch-Dog" on page 13.

If any of the above conditions occur, the FPGA should pulse the IO_1 output Low for 300 ns 
(min) to reconfigure the other FPGA.

The constant Low output, shown in Figure 8 as an output buffer (OBUF) tied Low, indicates 
whether the FPGA is online or off-line.

When an FPGA is configuring, all its outputs are in a high-impedance state. Therefore, the 
constant Low output will pull High indicating that the FPGA is off-line. When the FPGA is done 
configuring, the constant Low output will return Low.

The falling-edge detector in the active FPGA generates a pulse when the other FPGA comes 
back online. This pulse should be used to assert a global reset in the logic of both FPGAs. This 
will resynchronize all the logic of both FPGAs after one FPGA has been reconfigured, or when 
one FPGA has been momentarily off-line due to a transient interrupt. This is important, as it 
protects the hard-wired OUTPUTS from being in a state of contention.

The benefit of this practice is that the system will continue to function on one FPGA while the 
other is either upset or being reconfigured. However, the basic user’s logic must be designed to 
tolerate unexpected global resets.

Readback and SEU Detection
As described in the section "Design Mitigation Techniques" on page 4, readback provides the 
method for detection of upsets in the configuration memory. The simplest approach is to 
capture the 11-bit CRC value at the end of the readback stream. See "Microcontroller for 
Readback" on page 6.

RB_IN and RB_OUT, shown in Figure 8, are arbitrary bus names for the readback interface and 
the direction of data flow between the devices.

The RB_OUT port provides external access to the READBACK primitive and consists of three 
separate pins (two inputs and one output). The two inputs are the readback trigger (RT) and the 
readback clock (CLK). These must be connected to the RT and CLK pins of the READBACK 
primitive (see Application Note XAPP015). The output signal is for the readback data which 
comes from the RD pin of the READBACK primitive.

The RB_IN port interfaces directly to the RB_OUT of the other FPGA, and thus has the same 
pins but in opposite direction (the clock and trigger are outputs and data is input).

The user must build the control logic for performing and capturing the readback. The process 
requires execution of the following steps:

1. To begin the readback, assert the RT High, and hold until readback is complete. 

2. Clock continuously without interruption from the beginning to the end of readback. The 
clock signal MUST be between 1 MHz and 2 MHz.

3. Pipe the input readback data through a 6-bit decoder to watch for the "preamble" <111110> 
as shown in Table 1 on page 7. 

4. When the preamble is observed, begin counting the number of clock cycles. When the 
count reaches the value shown in Table 1, the next bit should be a zero followed by the 
11-bit CRC. 

5. Compare this CRC to the expected CRC.
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WARNING: The CRC of the very first readback after reconfiguration should be ignored. 
Only the CRC from the second (and subsequent) readback should be used.This is 
because the value of the expected CRC cannot be known prior to execution of a readback. 

The readback control logic must be designed to do three consecutive readbacks in order to 
perform the first compare: the first to initialize; the second to capture the CRC; and the third to 
execute the compare. Each subsequent readback then results in an immediate compare. 
However, if the FPGA being read back is reconfigured, this process must start again from the 
beginning.

The CRC value captured from the second readback needs to be stored for comparison with 
succeeding readbacks. This can be done with registers, but should use triple module 
redundancy so that the wrong value is not used should one of the registers get upset. 

In this case, it is acceptable to use LUTs for the voting circuit, because even if LUTs get upset, 
the system will eventually reconfigure and repair itself.

SEU Mitigation with STARTUP
The primary mitigation technique of this system is for the FPGA to turn off its outputs when a 
functional upset occurs. This is accomplished by duplicating the user’s basic design and 
XORing output pairs. All XOR outputs should then be ORed together, along with the GSR 
signal, to drive the GTS. (The GSR is included in case the OR gate driving the GSR gets 
upset).

As mentioned earlier, the GTS signal, when asserted, will tri-state all FPGA outputs. This will 
keep incorrect data from propagating out into the system. The GSR and GTS of the STARTUP 
component are entirely asynchronous and hard-wired. Thus, do not depend on any storage 
elements or clock sources.

When neither device is upset, both sets of outputs will be driving. The 50 ohm series resistance 
(actual impedance should be specified by the designer) on each FPGA output provides 
impedance-matching to board traces to reduce reflections. In addition, the 100 ohm series 
resistance between output pairs absorbs transient contention caused by output transition skew.

Because the logic is already duplicated in each device, this mitigation approach provides an 
additional benefit by nicely supporting the wire-AND approach to critical control signals. See 
"Wire-ANDed Outputs" on page 7. Since the device itself is duplicated as well, a quadruple pin 
redundancy system actually results.

Combining these techniques creates a reconfigurable system that is reliable for even the most 
critical functions and applications.

Optional Watch-Dog
It is possible for an SEU to affect the functional operation of the design without upsetting any 
configuration memory latches (i.e., upsetting the stored value in a CLB flip-flop). Such an upset 
would not be detected by a readback, and thus would not induce a reconfiguration.

When a functional upset like this occurs, there will most likely be a discrepancy between the 
"Logic" and "Duplicate Logic" which will cause the FPGA outputs to a high-impedance state. 
Whether or not the FPGAs’ design will eventually resynchronize without a reset depends 
entirely on the complexity of the design itself.

A simple pipelined arithmetic through-put function, such as a multiplier, will always 
resynchronize within the number of clock stages present between the upset flip-flop and the 
output. However, a highly complex state-machine may never recover. It is therefore left to the 
designer to determine if this is a possibility for the design in question.

If the possibility of a functionally upset design never recovering is of concern, then the designer 
should include a "watch-dog" timer to reset the system.

For this system the timer would be merely a counter that is clock-enabled by the constant Low 
output of the neighbor FPGA. When the neighbor FPGA tri-states its pins, the Low output will 
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pull high and thus cause the timer to start incrementing. When the timer has reached a 
"terminal count" value, it should pulse the GSR of both FPGAs.

It is left to the designer to determine the appropriate "terminal count" value for the application. 
For example, one application may require that the timer time-out before the next statistically 
expected upset. The time interval between upsets depends on the orbit and location. This may 
be a matter of seconds, minutes, hours, days, or years.

Summary With the release of Xilinx radiation-tolerant FPGAs, engineers now have a more powerful and 
flexible option for programmable logic in space applications. While the techniques to mitigate 
the effects of SEUs are more complicated than those methods employed for older technology 
radiation-tolerant FPGAs, in many applications the benefits of Xilinx FPGAs are an 
overwhelming return for the additional design effort. These benefits include: higher density (up 
to 62K gates); significantly lower cost; in-circuit reprogrammability (ISP), allowing rapid 
changes with no rework or scrapping; and three densities utilizing the same footprint that adds 
to cost savings and makes room for design growth. 

Revision 
History

The following table shows the revision history for this document.  

Date Version Revision

03/15/00 1.0 Initial Xilinx release.
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