EL673 MiniProject

05/12/2014

Design and Implementation of a PS/2 Receiver
Introduction

This experiment requires the design of a VHDL model of a PS/2 Receiver. The circuit will be designed and simulated in VHDL and then implemented and tested using the Xilinx board. This mini-projet will require you to undertake some of the design work, yourself as well as the coding and testing of the circuit using ModelSim. The operation of the keyboard will be tested using two of the 7-segment LED displays on the Xilinx development board. The VHDL code for the interface to the LEDs will be provided but you will be expected to integrate your code with these files.
Background Material

A PS/2 style keyboard uses scan codes to communicate key press data. Many computer keyboards in use today use the PS/2 connection and protocol. Each key has a single, unique scan code that is sent whenever the corresponding key is pressed. If the key is pressed and held, the keyboard repeatedly sends the scan code every 100 ms or so. When a key is released, the keyboard sends a “F0” key-up code, followed by the scan code of the released key. The keyboard sends the same code regardless of whether the Shift key is pressed or not. In this experiment we are going to latch the key value when the key is released i.e. the logic is looking for the sequence F0..<KEY> which it then uses to display the value of <KEY> on the board. Some keys, called extended keys, send an “E0” ahead of the scan code and furthermore, they may send more than one scan code. When an extended code is released an “E0 F0” key-up code is sent, followed by the <KEY> code. For this experiment we are only interested in the basic keys. But anyone ambitious enough to add decoding for extended keys is welcome to do so.
The standard Keyboard

[image: image1.png](& EEEE EEEE )@@ 6

UG E) ) E) G (@)@ (@) (E

(o)) ) () () () (3 Lse) L) L&) L) (B (28)

Cape EY ‘

() ) (8 () (8 (35 (38 () () (e [ 22) [
[ S«”z‘" GG EEEEE BB )
B i SPACE i o
(% [ B I EAn





Figure 1. The standard keyboard

The PS/S Connector 

[image: image2.png]







[image: image3.jpg]



Figure 2. The PS2 Connector

The PS/2 Interface Protocol

The keycodes used on a standard keyboard are shown in Figure 1. A PS/2 connector (shown in Figure 2) is soldered on the Xilinx Board and will be used to connect the keyboard to the Xilinx board. The interface uses two signals PS2_CLK and PS2_DATA. A PS2 keyboard sends key press data using the PS/2 interface protocol. This is a simple serial protocol defined by the waveform shown in Figure 3. The protocol has a start code, an 8-bit data code, a parity check code and a stop code. We will not be using the parity check bit in this experiment and you can assume it is always at logic 1 and hence can be considered to be the STOP bit.
[image: image4.png]Clock

Data

dle

Idle

Start

Stop

—— Keyboard

——Host




Figure 3. The PS2 Transmission Protocol

Design Hints.
A block diagram of the system is shown in Figure 4. You will be required to design and build the elements PS2 Interface and PS2 FSM.


[image: image5.emf]PS2 Interface PS2 FSM PS2 Display

PS2_CLK

PS2_DATA

CLK

RES

NEW_DATA_FLAG

DATA

8

CLK

RES

DATA

8

DISPLAY_FLAG

CLK

RES

DIGIT

DIGEN

8

4


PS2 Interface

The clock period of the PS/2 clock is between 60 and 100 s (equivalent to between 10 kHz and 16.7 kHz) which is quite slow. As the FPGA system clock is 50 MHz (or 25 MHz) this means that problems can occur when trying to synchronise the FPGA logic to the PS/2 clock and data. It is therefore important to filter and the input clock before using it as an “enable” signal for the internal FPGA logic.  (It is not a good idea to use the PS2 clock signal as a clock on the FPGA) The method for doing this is outlined in Figures 5 and 6.


[image: image6.emf]8 bit Shift Register

D

CLK

RES

PS2_CLK

25MHZ_CLK

RESET

Q(7 downto 0) PSCLKis1

PSCLKis0


Figure 5. PS2 Example Clock Filter


[image: image7.emf]D

CLK

RES

Q D

CLK

RES

Q

CE CE

PS2_CLK

ShiftEnable

PS2_CLK_VALID

25MHZ_CLK

RESET

PS2_CLK_VALID


Figure 6. Edge detection Circuit Example

The signals PSCLKis1 and PS2CLKis0 are derived from an 8 input AND and NOR gate respectively. The inputs to both gates are the 8 outputs from a Shift Register. PS2_CLK_VALID = 1 when all 8 of the shift register outputs are the same value (1 or 0). This is used to ensure that a true CLK edge has been detected.

The data is to be loaded into a shift register on the falling edge of the PS/2 clock signal. A circuit for detecting a falling edge is shown in Figure 6. Once a stop bit is received the serial data bits should be stored in a register for further processing by the PS2_FSM
PS2_FSM

The PS2_FSM logic is shown in Figure 7. This shows the state transition diagram and the signals that need to be generated.


[image: image8.emf]IDLE F0

NEW_BYTE

NEW_DATA_FLAG = 1

ANDDATA = 240 (F0 Hex)

NEW_DATA_FLAG = 0 NEW_DATA_FLAG = 0

N

E

W

_

D

A

T

A

_

F

L

A

G

 

=

 

1

D

I

S

P

L

A

Y

 

=

>  

1

RES=1

 
Figure 7. PS2 FSM State Transition Diagram.

Design, build and test the operation of these circuits before combining them with the circuit PS2 DISPLAY which has been provided for you. The TOP level (and the .ucf file) should then be used to generate the Xilinx .bit file. Make sure your signal names correspond to the signals used in the .ucf file provided. 
Your completed report should include a fully commented set of VHDL code and a Test Bench indicating what you have tested. Marks will be given for a working design and for code structure.
A complete report describing your design and the VHDL code archived in a .zip file should submitted on Moodle by 18:00 by Thursday 18th December 2014

2
Version 1.0

_1384015154.vsd
PS2 Interface


PS2 FSM


PS2 Display


PS2_CLK


PS2_DATA


CLK


RES


NEW_DATA_FLAG


DATA


8


CLK


RES


DATA


8


DISPLAY_FLAG


CLK


RES


DIGIT


DIGEN


8


4



_1414499419.vsd
D


CLK


RES


Q


D


CLK


RES


Q


CE


CE


PS2_CLK


ShiftEnable


PS2_CLK_VALID


25MHZ_CLK


RESET


PS2_CLK_VALID



_1384015509.vsd
IDLE


F0


NEW_BYTE


NEW_DATA_FLAG = 1
AND DATA = 240 (F0 Hex)



_1321099211.vsd

