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Abstract 
This paper presents a technique for describing the behavior 

of transmission gates (TGs) in VHDL. The concept of virtual 
signal is introdu&d into the TG’s data structure to reprelsent the 
nature of the connection. The model’s semantics are coded in 
three parts: the state transition, the steady states, and the 
connecting protocol. Simulation results indicate that the model is 
correct and robust. 

I. Introduction 
VHDL allows description of hardware behavior down to the 

gate level, but modeling of switching elements at the more 
primitive transistor level is not supported [l-3]. In real world 
designs, especially in bus-oriented hardware designs, however, 
the transmission gate is an indispensable component. Thus, a TG 
model, even at a functional level, is much more desirable and will 
certainly enhance the utility of the language. In this paper, a 
technique for modeling the transmission gate in VHDL is 
presented. The approach of this technique is based on a critical 
observation that data flow is the primary focus of architecture 
design, and the direction of the data flow is a property that can 
be derived from the connecting circuit itself. The rationale of 
this approach is explained in the next section. 

The VHDL TG model is presented in Section III. It is 
described in terms of data structure and semantics designs. The 
data structure reflects the two abstract properties of the 
transmission gate I/O ports, namely, the information about the 
data type and the nature of the connections. The semantics are 
coded in three parts: the state transition, the steady stat’es. and 
the connecting protocol. The model has been tested in a bus- 
based ASIC processor design. The experiments on the model are 
described in Section IV. 

II. The Behavior of TG: What do we Want to Model? 
In a given circuit, transmission gates are used :in two 

different contexts: realization of logic functions and no& 
access controls. The former refers to the use of TG circuits to 
realize logic functions such as XOR, addition, multiplexing, etc. 
For this type of circuits. ‘the lack of a transmission gate model in 
VHDL does not seem to be a major obstacle in architecture 
designs, since the logical equivalents are readily constructed 
through a higher level abstraction [4]. This is also made clear by 
the fact that the XOR function itself is a built-in logical operator 
provided by the language. Thus, the modeling effort lof this 
work is focused on the use of transmission gates in the second 
context. The goal is to develop a VHDL model that can be 
instantiated in bus-oriented architecture designs. To achieve 
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this goal. the TG’s behavior is Fist investigated by considering 
a simple circuit in which an inverter output is connected to an 
inverter input through a transmission gate. The result is then 
extended to the situation of a general bus architecture. 

Fig. 1 shows the flow direction of the transient current when 
the transmission gate is turned on. Note that while the current (or 
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Fig. 1. The direction of current flow in an INV-TG-INV circuit. 

electron) flow direction depends on the data value, the outcomes 
differ. In l(a), both the output node of INV-1 and the input node 
of INV-2 will become ‘1’; but in l(b) both nodes will become ‘0’. 
This suggests that the key to characterizing the behavior of the 
transmission gate lies not in the flow of current, but in the flow 
of data, even though the former is the mechanism that realizes the 
latter. Furthermore, the difference between the outcomes of I(a) 
and l(b) is due to the finite size of the load capacitor. In other 
words, the circuit to which the TG is connected. or the nature of 
the connection, determines the direction of the data flow. 
Obviously, this is a piece of information that should be 
combined with the data content and input tlo the transmission 
gate model. 

In order to encode the nature of the connection into the model 
properly, the use of the transmission gates in a more general 
setting is considered. Fig. 2 illustrates a hierarchical bus system 
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Fig. 2, A hierarchical bus architecture. 
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in which multiple circuit modules communicate with each other 
through the bus. The TGs play the role of controlling the bus 
access. For generality, it is assumed that each module may have 
its own internal bus ss illustrated by Module-l. Comparing Fig. 
1 and Fig. 2, it is obvious that the input signal to the TGs that 
specifies the nature of the connection must be dynamic. 
Moreover, some of the TGs do not directly connect to either a 
load or a current source, but serve only as a messenger to pass 
along the data. At steady states, however, if a valid path exists. 
then it is characterized by one and exactly one driving source 
with one or more loads. Accordingly, Fig. 1 can be generalized 
to account for this situation by adding intermediate TGs in the 
path as shown in Fig. 3. Another generalization is to replace the 
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Fig. 3. A generalized valid data flow path at steady state 

inverter circuits at the two ends of the TG in Fig. 1 with two 
generic circuits called primary devices so that data can flow in 
either direction. The concept of primary device is associated 
with the concept of virtual-signal, and both are to be explained 
next. With these modifications, the situation of multiple loads 
can be viewed as the sum of multiple distinct paths each of which 
consists of the same driving source but a distinct load. 

Based on the foregoing analysis. a type virtual-signal is 
defined to represent the nature of the connection, and thus the 
direction of the data flow. The allowed values and their meanings 
are specified in Table 1. A virtual-signal value of 1 designates a 
data source (driver) and a value of -1 designates a load (reader). 

Table 1. Virtual-Signal Values and Connection Types. 

Open 

driver 
request status 

A value of 0 indicates physically an open connection, electrically 
a high-impedance state. and logically a don’t care condition. The 
value 2 does not specify a connection type, rather, it is used by 
the TGs as an interrogation signal to configure the data flow 
dynamically. In addition, the circuit devices to which the TGs are 
connected can be classified either as primary device or 
secondary &vice. Primary device can originate a virtu&signal 
value that specifies a connection type while secondary device 
can only pass along the virtual-signal value. Five basic primary 
devices and their ranges of virtual-signal values are listed in 
Table 2. 

Table 2. Primary Devices and their Ranges. 

Primary Device I Virtual-Signal Value Range 

gate input 

gate output 

tristate output 

I bidirectional buffer I I-1.11 I 

bi-directional buffer 
with tristatc output I-1.0, 11 

III. A VHDL Model of TG 
With the question of what to be modeled settled, we now 

proceed to describe how the model is built. The VI-IDL model of 
the transmission gate is constructed in terms of data structure 
and semantics. The data structure represents the static abstract 
properties, i.e.. information about the type of data and the nature 
of the connections. of the transmission gate, while the semantics 
describe operations on the data structure. The interpretation of 
the semantics constitutes the dynamic behavior of the 
transmission gate. 

3.1 Data Structure 
Without loss of generality, the TG circuit is considered as a 

three-port device with two I/O ports controlled by a single 
signal ctrl. Fig. 4 shows the TG model’s VHDL entity 
declaration and the corresponding graphic representation. The 

(a) Circuit Symbol 

’ ctrl 
(b) VHDL Entity Declaration 

entity Transmission-Gate is 
port (Data-O, Data-l : buffer INTEGER := 0; 

DO-in, Dljn : In INTEGER; 
state0 out, state1 out : out VIRTUAL-SIGNAL := 0; 
stateO~n, statel-K : in VIRTUAL-SIGNAL; 
ctrl : in BIT); 

end Transmission-Gate; 

(c) Graphic Representation of the Data Structure 

Port-0 Port-l 

D;m + zs; 

+---. -0 state0 out 

\ 
0 . . . . . . . . . . . . * f+tat&~~n 

statel-out O..... ---.* 
State l-in 4 . . . . 

ml f 

. . . . . . . . 0 

Fig. 4. The TG’s entity declaration and data structure. 

control signal ctrl is of type BIT and each I/O port is translated 
into four signals accessible from the outside world. Among these 
four signals, Data-i of an appropriate type in interest represents 
the “official’ value of Port-i. The buffer mode is used for this 
signal so that it can be read from both inside and outside but can 
only be driven within the TG. An auxiliary input port and a 
resolution process are created to resolve the “official” value. 
Since the language has no restriction on reading a port value from 
outside an entity, accomplishment of the “official” status of 
Data-i can only rely on progr amming discipline. In other words, 
it is the programmer’s responsibility to refrain from reading 
Di-in anywhere in the program. 

In addition, each I/O port also has two virtual-signals as 
indicated by the dotted lines in the figure. They do not 
correspond to physical wires but are used for encoding the 
connection types so that information of the data flow direction 
can be specified in the semantics of the TG body and derived 
dynamically. 

3.2 Semantics 
The semantics of the TG’s behavior are partitioned into 

three parts of the state transition, the steady states, and the 
connecting protocol. The first two are realized by the process 
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statements within the TG architecture body. The third part 
stipulates how the outside world interacts dynamically with the 
TG and is implemented by both the TG and the connecting 
processes. 

3.2.1 The State Transition 
The state of the TG is defined by the signal ctrl and the four 

virtual-signals. Since changes in data signals are ultimately 
originated from the external world, these data signals are not 
considered as constituents of the TG’s internal state. The state 
transition (Fig. 5) is implemented by a VHDL process staltement 
in the TG’s architecture body (Fig. 6). 

-5 I 

Port 1 
driviiig 

l so-i(o) = stateO_in(out) 
sl-i(0) = stateljn(out) 

Fig. 5. The state transition of the TG. 

Initially, the TG is in a state of open connection 
characterized by a ctrl signal value of ‘0’ and all four virtual- 
signals equal to 0. This is also the state to which the TG wiIl 
return from other non-error states whenever the signal ctrl 
experiences a ‘1’ to ‘0’ transition. When the signal ctrl rises from 
‘0’ to ‘l’, the TG will set the output virtual&naIs of both I/O 
ports to 2 and then monitor the responses on the two input 
virtualYsignaIs. A single driving signal (virtual-signal value 1) 
from erther port will cause the TG to enter one of the two 
connecting (driving) states. At any time, the two input 
virtual-signals having the same value of 1 (both driving) or -1 
(both reading) will render the TG to enter the error state and the 
simulation will terminate. Essentially, this process performs 
constraint violation checking and executes the protocol on the 
part of the TG to configure the data flow direction. 

3.2.2 The Steady States 
Among the four allowed states in the state transition 

diagram, only three correspond to physical configurations. They 
are the open state and the two driving states - one from Port-1 
to Port-O, and the other from Port-0 to Port-l. The. two 
driving states can be visualized as effects on the data structure 
as illustrated in Fig. 7. Thus, the implementation of the s.teady 
states is manifested as the problem of assigning the right value 
at the right time to the I/O port’s “official” value holder. This is 
done by a process statement for each port. The process 
statement for Port-0 @S-O) is listed in Fig. 8. Essentially, this 
process responds to the driving condition of the other port 
(Port-l) by assigning the value of Data-l to Data-O. When 
Port-1 is not driving, it then responds to the change of DO-in 
and assigns it to Data-O. 

ST: process 
variable SO, sl : VIRTUAL-SIGNAL: 

begin 
stateO_out <= 0; - TG in open state 
statel-out <= 0; 
wait until ctrl = ‘I’; 
while ctrl = ‘1’ loop 

steteo~out <= 2; - Request status 
statel~out <= 2; 
wait on stateO_in, stateljn, ctrt; 
If cM = ‘1’ then 

so := state0 in; 
sl := statel2n; 
assert not ((SO = I) and (sl = 1)‘) 

report “Roth ends of the TG are driving* 
severity ERROR; 

assert not ((SO = -1) and (51 = -I)) 
report “Both ends of the TG are reading” 
severity ERROR; 

If sl = 1 then -- Port 1 driving 
stateo~out <= 1; 
statel-out -z= -1; 
while ctrl = ‘1’ loop 

wait on state0 in, statel-in, ctrl; 
assert stateo-G I= 1 

report “Both ends of the TG are driving” 
severity ERROR; 

if statel-in I= 1 then exit; end if; 
end loop; 

elsif SO E 1 then - Port 0 driving 
stateo~out <= -1; 
statel-out <= 1; 
while ctrl = ‘1’ loop 

wait on state0 in, statel-in, ctrl; 
assert statel-in I= 1 

report “Both ends of the 1-G are driving” 
severity ERROR; 

if stateO_in I= 1 then exit; end if; 
end loop; 

end if; 
end if; 

end loop; 
end process ST; 

Fig. 6. The process statement implementing the state transition. 

(a) Port-1 Driving 

Port-0 Poti- 

\ 

-1 
0 . . . . . . . . . . . . + stat&-in 

d 

state l-in jg . . . . . . . . . . . . 0 

ctrl I 

(b) Port-0 Driving 

Port-0 Port-1 

0 
t 

........ &! stateO_in 

1 

stateljn 35.. 
/ 

. . . . . . . 0 

ctrl 

Fig. 7. The data path of the two driving steady states. 
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ss-0: procesr 
begin 

if ctrl = ‘0’ then - TG OFF 
welt on cttf, DO-in: 
if not DO-in’STABLE then 

Data-0 <= DO-in: 
end If; 

else -TGON 
if stateljn = 1 then -- Port 1 driving 

Data-0 <= Data-l ; 
wait on Data-l, state1 -in, ctri; 

else 
wait on DO-in, statelin, ctrl; 
If not DO-in’STABLE then 

Data-0 <= DO-in; 
end if; 

end if; 
end If; 

end process SS-0; 

Fig. 8. The process statement imlementing the steady states. 

3.2.3 The Connecting Protocol 
The simulated behavior of the TG inherently depends on the 

nature of the connection, and the connecting protocol defines 
how this information is passed to the TG during simulation. The 
protocol involves both the TG and the connecting device, with 
the connecting device playing a passive role. That part of the 
protocol for the connecting device is also divided into the two 
processes of state transition and steady states. The implement- 
ation can be described algorithmically as follows: 

. State_Transition Process: 
( if state-out (from TG) changes to 2 then 

report connectionJype via state-in; 
elsif value of state-out drops from 1 then 

send the current state-out value to readers; 
end if; ) 

l Steady-States Process: 
( if state-out (from TG) = 1 then 

assign Data value of TG to readers: 
elsif a driver exists then 

assign the current driver’s value to D-in; 
endif; ). 

IV. Simulation Experiments 
VHDL programs have been developed to test the TG model 

in three different contexts. The VHDL Programs were run on the 
Intermetrics VHDL simulator installed on a MicroVax II. In the 
first experiment, the TG is tested as a stand-alone device with 
integer as the data type for the I/O ports which are connected to 
separate controlled driving sources. The TG’s control port is 
connected to a clock signal which turns on for 30 11s every 100 
ns starting at 50-ns. Data are then driven to the two ports with 
different timing characteristics to test various dataflow cases, 
and the simulation results have confirmed that the model exhibits 
the intended behavior. To further test the robustness of the TG 
model, two TGs are instantiated and connected in series. The TG- 
to-TG connections are directly made from one TG’s out-mode 
port to the other’s in-mode port as shown in Fig, 9. The control 
ports of both TGs are tied to the same clock signal and the same 
input pattern of the one-TG experiment is applied to the open 
ends of the two-TG circuit. As expected, the simulation result is 
the same as before except that some of the signals settle down at 
a greater delta cycle. 

In the second experiment, a TG entity is instantiated in a 
circuit module to control the connectivity between a register’s 
I/O port and a bus so that a second source (directly from another 
circuit module) can write to the register [S]. The three signals - 
the register’s I/O port, the second source, and one end of the TG 

ctl F 
I 

I I 

Port 0 of TG2 
3 Port-l of TGl 

Fig. 9. The TG-to-TG connection. 

forms an internal bus. To resolve the value of the internal bus, a 
resolution mechanism consisting of a transition process and two 
steady state processes is developed to implement the 
connecting protocol described previously. The module is then 
tested for its functional specifications which involve both read 
from and write to the register through the TG. 

The third experiment involves instantiation of the TG 
models in different circuit modules (one of which is the register 
module just described). These modules, as part of the datapath in 
a special ASIC processor design, communicate with each other 
via a bus. Simulation results have again confirmed that the TG 
model correctly produces the intended behavior. 

V. Summary 
A VHDL TG model for architecture design has been 

presented. The basic idea of this work is to characterize the 
types of a TG’s connections with the concept of virtual-signal 
so that the TG can configure the data flow dynamically. 7’he 
major focus is on providing constmcts and mechanisms for 
modeling TGs in the context of controlling node access. The 
model has been tested in a special ASIC processor design [5] 
and simulation results indicate that the TG model is both correct 
and robust. 

As the model is developed based on a general bus 
architecture and the connecting process is algorithmically 
defined, the model can be generated automatically from circuit 
schematics and can be incorporated in existing CAD 
tools/systems transparent to the user. Extending the results of 
this work to the cases where TGs are used to realize logic 
functions appears promising. Also, timing delays in this work 
are implicitly assumed to be lumped at external connecting 
signals. A more elaborate model incorporating accurate timing 
information will certainly enhance the utility of the model. 
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